<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > EMC安規 > 正文

    低EMI電路設計和預兼容檢測到底有多重要?別做無用功

    發布時間:2015-02-03 責任編輯:echolady

    【導讀】在進行微波暗室一致性測試之前,構建低電磁干擾原型至關重要。其中有兩個部分需要特別注意,設計低輻射電路和預兼容檢測。預兼容檢測的過程相對復雜,確實關鍵的部分。為了避免做無用功,本文主要強調了低EMI電路設計和預兼容檢測的重要性。

    最低EMI電路設計

    要確保低輻射發射(RE),設計電路原理圖和PCB版圖時必須應用最佳實踐經驗,包括為供電回路、USB數據線、以太網等信號添加鐵氧體磁珠以過濾EMI.此外,供電回路上適當放置充足數量的去耦合電容器可以最大限度地減少電源分配網絡阻抗,進而降低數字負載產生的噪聲紋波幅度,并減少輻射風險。同時,優化開關電源的閉合回路補償網絡設計以實現穩定閉合回路,能夠確保電壓輸出可控,并最大幅度地降低開關噪聲紋波幅度。噪聲紋波幅度降低可以顯著抑制原型的EMI風險。

    高頻或快上升/下降沿信號的PCB走線應參考連續回路(例如參考地平面),以降EMI風險。走線不能經過任何分割平面和孔洞。如果信號需要通過過孔完成層間傳輸,緊鄰信號過孔位置應放置至少一個接地過孔,作為信號電流從接收端返回發射端的回流路徑。如果沒有適當的回流路徑,返回電流可能在PCB中隨意傳輸,成為潛在的EMI源。

    出色的接地方案也是最大限度降低EMI的關鍵因素。所有PCB設計都必須避免接地回路,因為返回信號電流經過時接地回路將形成輻射發射機。設計接地為寬參考面可以構建出色的接地方案。不同電路組(例如射頻、模擬和數字電路)的地平面應當物理隔離,并通過鐵氧體磁珠建立電路連接,以幫助防止高頻噪聲在電路組之間傳播。

    完成PCB版圖設計后應執行仿真進行EMI分析,以便在制造前確保PCB具有較低的輻射發射風險。省略EMI仿真可能無法保證PCB的EMI性能,會導致重新設計。如果EMI仿真結果符合技術規范要求,設計人員即可開始PCB制造,然后使用頻譜分析儀對原型PCB執行近場電磁掃描。EMI仿真和近場電磁掃描等預兼容檢測可以增加設計人員的信心,確信原型具有較低的EMI。完成預兼容檢測后,被測器件即可執行實際微波暗室EMI一致性測試。

    仿真EMI分析

    完成PCB版圖設計后,將版圖文件導入EMPro 2013.07 執行3D EMI仿真。選擇差分信號進行有限元法(FEM)三維電磁場仿真。三維電磁場仿真是設置電磁邊界條件和模型網格尺寸并求解麥克斯韋方程的過程。為確保仿真結果精度,邊界尺寸應設為PCB厚度的8倍以上,網格尺寸應設為PCB寬度的1/5以下。運行三維電磁場的計算機需要配置16G以上的內存和100G以上的存儲容量,以確保分析順利進行。

    設置遠場傳感器捕獲發射電磁場,并利用EMPro的EMI仿真模版計算遠場發射功率,然后設置10m距離的電場探頭,繪制頻域響應圖。再執行時域有限差分法(FDTD)模式的三維電磁場仿真,并與FEM模式的仿真結果進行對比。

    參見30MHz~1GHz頻率的電場強度仿真圖(圖1)(電場強度單位dBμV,頻率單位GHz),輻射功率電平(藍色曲線為FEM模式仿真,紅色曲線為FDTD模式仿真)低于約45dBμV的FCC最大閾值(綠色虛線)。

    低EMI電路設計和預兼容檢測到底有多重要?別做無用功
    圖1 仿真EMI圖
    [page]
    近場電磁測量

    制成并組裝原型PCB后,使用頻譜分析儀對原型進行近場電磁掃描。連接頻譜分析儀的單匝線圈捕獲原型發射的近區電磁場。圖2是30MHz~1GHz頻率范圍的頻域信號(電磁場功率電平單位dB,頻率單位Hz)。

    低EMI電路設計和預兼容檢測到底有多重要?別做無用功
    圖2 電磁掃描測量圖

    400MHz附近時出現最大功率強度(-66.4dBm)的尖峰。作為近區傳感器的線圈在距離被測器件3英寸的范圍內移動。30kHz的頻譜分析儀分辨率帶寬可以實現低本底噪聲(-80dBm)測量,因此尖峰(不同離散頻率的輻射)清晰可見。要增強原型通過微波暗室遠場(3m和10m)EMI一致性測試的信心,近區功率峰值應低于-65dBm。

    EMI一致性測試

    圖3為原型在微波暗室的3m遠場EMI一致性測試結果。紅線顯示的是CISPR 11A類最大輻射發射功率電平:30MHz~1GHz頻率范圍內低于56dBμV。紅線下方的棕色曲線表示是德科技(原安捷倫)EMC指南中規定的保護頻段。輻射波的垂直和水平分量分別由藍色和綠色曲線表示。400MHz和560MHz頻率時出現兩個分別為38dBμV和37dBμV的功率峰值,均低于最大閾值。

    低EMI電路設計和預兼容檢測到底有多重要?別做無用功
    圖3 3m輻射發射測量結果

    總結

    最后我們可以了解到,在電源的PCB設計中低EMI電路設計和預兼容檢測(例如三維EMI仿真和近場電磁掃描)十分重要,可以避免不必要的PCB重新制造,節省開發成本和時間,并且能夠縮短微波暗室EMI一致性測試時間,確保電子器件按時甚至提前投放市場。

    相關閱讀:

    問題盤點:智能手機EMI測試中ESD靜電放電
    可在強EMI下工作的高性能艦載繪圖機電源設計
    揪出EMI電磁干擾的“真兇”——傳導

    要采購頻譜分析儀么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    国产亚洲美日韩AV中文字幕无码成人| 日韩人妻无码一区二区三区综合部 | 成人无码区在线观看| 亚洲乱码中文字幕综合234| 中文字幕 亚洲 有码 在线| 日韩精品真人荷官无码| 蜜桃无码AV一区二区| 最近中文字幕在线| 中文有码vs无码人妻| 久久精品无码av| 国内精品人妻无码久久久影院| 亚洲日本中文字幕天堂网| 欧美日韩中文国产一区| 日韩亚洲欧美中文在线| 日韩少妇无码一区二区三区 | 精品欧洲av无码一区二区14| 久久久噜噜噜久久中文字幕色伊伊| 无码国内精品人妻少妇蜜桃视频| 久久午夜夜伦鲁鲁片免费无码影视| 日本精品久久久久中文字幕8| 精品久久久中文字幕人妻| 久久综合一区二区无码| AV无码一区二区大桥未久| 色偷偷一区二区无码视频| 亚洲av无码一区二区三区不卡 | 国产品无码一区二区三区在线| 暖暖日本免费中文字幕| 亚洲AV无码专区在线播放中文| 国产 日韩 中文字幕 制服| 中文字幕无码一区二区三区本日| 无码的免费不卡毛片视频| 亚洲&#228;v永久无码精品天堂久久 | 国产精品中文久久久久久久| 中文字幕乱码免费视频| 最近的中文字幕在线看视频| 精品久久亚洲中文无码| 人妻少妇久久中文字幕一区二区| 日韩国产中文字幕| 最近免费最新高清中文字幕韩国| 亚洲欧美日韩中文字幕二区| 曰韩人妻无码一区二区三区综合部 |