-
傳導輻射測試中分離共模和差模輻射的實用方法
開關穩壓器的EMI分為電磁輻射和傳導輻射(CE)。本文重點討論傳導輻射,其可進一步分為兩類:共模(CM)噪聲和差模(DM)噪聲。為什么要區分CM-DM?對CM噪聲有效的EMI抑制技術不一定對DM噪聲有效,反之亦然,因此,確定傳導輻射的來源可以節省花在抑制噪聲上的時間和金錢。本文介紹一種將CM輻射和DM輻射從...
2021-02-23
傳導輻射 測試 共模/差模輻射
-
如何在電動汽車設計最小化EMI?
長期以來,電磁兼容(EMC)一直是電動汽車(EV)以及混合電動汽車和(HEV)系統關注的主要問題。傳統的內燃機(ICE)車輛本質上是機械的,而電子設備屬于機械動力裝置的配套。但是,EV和HEV卻大不相同。
2021-01-13
電動汽車 EMI EMC 隔離
-
電源適配器的EMC問題分析
電源適配器(Power adapter)是小型便攜式電子設備及電子電器的供電電源變換設備,一般由外殼、變壓器、電感、電容、控制IC、PCB板等元器件組成,它的工作原理由交流輸入轉換為直流輸出;按連接方式可分為插墻式和桌面式。廣泛配套于安防攝像頭,機頂盒,路由器,燈條,按摩儀等設備中。適配器本質...
2021-01-11
電源適配器 EMC
-
如何使用轉換速率控制EMI
許多工業和汽車應用中都使用了同步降壓轉換器電源拓撲結構;此類應用還要求具有低傳導放射和輻射放射特性,以確保電源不會干擾共用同一條總線的其它設備(輸入電壓 [VIN])。例如,在汽車信息娛樂系統中,電子干擾(EMI) 會在汽車立體音響中發出撓人的噪音。
2021-01-06
轉換速率 同步降壓轉換器 EMI
-
技術發展趨勢的變化和熱設計
上一篇文章中我們以“什么是熱設計”為標題,大致介紹了半導體元器件熱設計的重要性。本文我們希望就半導體元器件的熱設計再進行一些具體說明。
2020-12-11
技術趨勢 熱設計 半導體元器件
-
采用DC/DC降壓穩壓器優化汽車的EMI
隨著汽車配備越來越多的傳感器和功能,汽車中的電子含量不斷增加,功率水平也不斷提高。過去依賴低壓差線性穩壓器(LDO)的工程師現在可能需要使用降壓拓撲來滿足系統的高效率要求。
2020-12-09
DC/DC降壓穩壓器 汽車EMI
-
穿越隔離柵供電:TI教你一個好方法!
在電子系統中,經常需要在有較大電勢差的高壓系統和低壓電路之間建立可靠的隔離,以阻止兩個域不同部件之間的異常直流和交流電流,保護人身安全免受電擊或者減少設備遭受損壞的風險。按照安全要求的等級,隔離可被分為功能隔離、基本隔離、雙隔離和增強隔離。
2020-12-08
穿越隔離柵供電 TI 方法
-
ams的先進主動降噪技術為Padmate新款PaMu Quiet耳塞提供核心賣點
憑借艾邁斯半導體AS3460數字聽覺增強器件的出色主動降噪和聽覺增強功能,市場新星Padmate公司打造了極具價格競爭力的PaMu Quiet耳機,于2020年9月上市后廣獲好評。
2020-12-07
ams 主動降噪技術 Padmate PaMu Quiet耳塞
-
如何控制LED驅動器的EMI?當然Silent Switcher莫屬~
如今,幾乎所有照明應用都使用LED。LED在相對較短的時間內便已成為照明的首選。但在大多數應用中,僅憑LED本身還無法實現其功能。LED必須采用合適的電源才能工作。這樣的驅動器電路自然應該盡可能高效以降低能耗,LED主要使用開關電源的原因正在于此。
2020-12-06
LED驅動器 EMI Silent Switcher
- 如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰?
- 不同拓撲結構中使用氮化鎵技術時面臨的挑戰有何差異?
- 集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
- 多通道同步驅動技術中的死區時間納米級調控是如何具體實現的?
- 電壓放大器:定義、原理與技術應用全景解析
- 減排新突破!意法半導體新加坡工廠冷卻系統升級,護航可持續發展
- 低排放革命!貿澤EIT系列聚焦可持續技術突破
- 連偶科技攜“中國IP+AIGC+空間計算”三大黑科技首秀西部電博會!
- 儀表放大器如何驅動物聯網終端智能感知?
- 儀表放大器如何成為精密測量的幕后英雄?
- 精密信號鏈技術解析:從原理到高精度系統設計
- 性能與成本的平衡:獨石電容原廠品牌深度對比
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall