<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > RF/微波 > 正文

    用于汽車防撞雷達的波束賦形陣列天線設計

    發(fā)布時間:2017-12-15 責任編輯:lina

    【導讀】本文設計了一種應用于汽車后向防撞雷達的波束賦形陣列天線。文章首先設計了串饋微帶陣列天線用于實現(xiàn)雷達俯仰面低副瓣方向圖;通過PSO優(yōu)化算法優(yōu)化出水平面波束賦形方向圖的激勵幅度和相位;然后設計了功分網(wǎng)絡實現(xiàn)對該波束賦形陣列天線的饋電;最后將功分網(wǎng)絡與陣列天線組合起來,完成了波束賦形陣列天線的設計。該設計對汽車防撞雷達波束賦形的應用具有參考價值。


     引言

    得益于被稱為“深度學習”的新一代人工智能軟件和更加可靠性能更好的電腦和硬件傳感器,在未來幾十年里,汽車將獲得與人類相似的能力,在無法預測的環(huán)境中自主安全駕駛,無人駕駛汽車將逐漸取代由人類駕駛的普通汽車[1];在這個從普通汽車到無人駕駛汽車過渡的過程中,毫米波防撞雷達作為無人駕駛汽車的“眼睛”,收集汽車周邊物體的速度,距離,位置等信息;毫米波防撞雷達的研究也成了近年來汽車電子廠商們關注的熱點。

     汽車防撞雷達介紹

    應用于汽車的防撞雷達一般工作在兩個頻段:24GHz-24.25GHz和76GHz-81GHz;工作在24GHz頻段的防撞雷達一般安裝在汽車后向,實現(xiàn)盲區(qū)監(jiān)測(BSD),變道輔助(LCA)以及倒車側向警告(RCTA)等功能;工作在76GHz-81GHz頻段的毫米波防撞雷達一般安裝在汽車前向,用于實現(xiàn)自適應巡航(ACC),緊急制動(AEB)等功能。汽車防撞雷達不同功能覆蓋區(qū)域如圖1所示:

     

    1 防撞雷達波束覆蓋區(qū)域示意圖

    本文所介紹的波束賦形陣列天線工作在77GHz-79GHz,作為安裝在汽車后向毫米波防撞雷達的一部分,用于實現(xiàn)BSD,LCA和RCTA功能;相對實現(xiàn)同樣功能工作在24GHz的防撞雷達,工作在77GHz頻率的雷達具有更高的速度探測精度,更遠的探測距離,更好的目標探測分辨率以及更小的尺寸,更易集成在后保險杠或汽車尾燈中等優(yōu)勢。

    3波束賦形陣列天線的設計

    3.1串饋微帶貼片陣列天線

    微帶天線具有低剖面,重量輕,便于加工,成本低廉,易于與微波電路集成等優(yōu)點;將微帶貼片天線串聯(lián)饋電組成駐波線陣,能夠滿足高增益低副瓣等要求,適合用作毫米波防撞雷達天線。

    3.1.1理論分析

    微帶貼片天線可看做一個場量在橫向沒有變化的開路諧振器[2],其輻射場由貼片長度方向兩側開路縫隙產(chǎn)生,如圖2所示

     

    2 矩形微帶貼片天線

    通過微帶傳輸線將貼片串聯(lián)組成串饋駐波陣,貼片間距為;其示意圖如圖3所示

     

    3 串饋微帶貼片線陣結構示意圖

    在串饋微帶貼片陣列中,每個貼片天線的寬度正比于貼片天線等效導納,而等效導納又正比于該貼片的激勵功率;因此通過并調(diào)節(jié)線陣中每個貼片的寬度,可以改變該天線的激勵功率,從而實現(xiàn)線陣激勵的錐削分布,滿足防撞雷達天線在俯仰面對于低副瓣的要求。

    3.1.2 仿真設計

    根據(jù)增益與波束寬度的要求確定該串饋微帶貼片線陣單元數(shù)為10,副瓣電平小于-20dB;采用厚度為5mil的RO3003介質(zhì)基板,經(jīng)理論分析與仿真軟件優(yōu)化。仿真模型如圖4所示

     

    4天線仿真模型

    天線俯仰面增益方向圖如圖5所示

     

    5 俯仰面增益方向圖

    線陣增益為15.1dBi,副瓣電平-22.6dB。

    將圖4的線陣模型等間距排列6行組成如圖6所示的面陣

     

    6 面陣仿真模型

    該面陣用于實現(xiàn)水平面方向圖的波束賦形。

    3.2  PSO粒子群算法優(yōu)化激勵幅度相位

    粒子群的基本概念是來自于鳥群覓食行為的研究[3]。與遺傳算法類似,粒子群算法也是一種隨機搜索方法,不同的是,粒子群優(yōu)化算法沒有選擇、交叉、變異等復雜過程,而是依靠個體間的協(xié)作來尋取最優(yōu)解。每個粒子通過跟蹤粒子本身找到的最優(yōu)解Pbest和群體找到的最優(yōu)解Gbest,更新離子的位置和速度,不斷向最優(yōu)解靠近,最終達到最優(yōu)解。粒子群算法優(yōu)化流程圖如圖7所示

     

    7 算法優(yōu)化流程圖

    從防撞雷達威力圖提取出波束賦形的目標方向圖,通過PSO優(yōu)化算法對圖6中陣列天線激勵幅相值得優(yōu)化,實現(xiàn)對目標方向圖的賦形。在HFSS仿真軟件中輸入粒子群算法優(yōu)化得到的激勵幅相值,得到仿真方向圖與目標方向圖如圖8所示

     

    8波束賦形方向圖

    從圖8可見仿真結果與目標方向圖吻合較好,說明粒子群算法優(yōu)化出的結果可靠。

    3.3功分網(wǎng)絡的設計

    3.2節(jié)確定了各線陣激勵的幅相值,但圖8里的仿真方向圖是理想的,現(xiàn)實中需要通過1分6的功分網(wǎng)絡來將其實現(xiàn)。常用的功分器有Wilkinson功分器和T型節(jié)功分器;Wilkinson功分器只能組成并饋網(wǎng)絡,這種網(wǎng)絡具有較大的損耗且占用面積大,不利于小型化;而由T型節(jié)組成的串饋功分網(wǎng)絡具有損耗低占用面積小的優(yōu)勢,更適合于實現(xiàn)3.2節(jié)中波束賦形的幅相激勵。

    3.3.1理論分析

    該串饋網(wǎng)絡依靠阻抗變換段實現(xiàn)波束賦形的激勵幅度,通過改變輸出饋線的長度實現(xiàn)波束賦形的激勵相位;串饋網(wǎng)絡等效電路如圖9所示

     

    9串饋網(wǎng)絡等效電路

    圖中Yo為連接功分網(wǎng)絡的串饋線陣等效導納,Zci為各阻抗變換段的特性阻抗,Zco為饋線的特性阻抗;串饋網(wǎng)絡輸出端口激勵電流與阻抗有如下的關系[4]

     

    各端口激勵電流Ii由3.2節(jié)優(yōu)化得到,傳輸線特性阻抗Zco已知,可以求出每節(jié)阻抗變換段對應的特性阻抗,從而可以得到該特性阻抗對應的寬度微帶線寬。

    3.3.2 仿真設計

    功分網(wǎng)絡仿真模型如圖10所示,

     

    10功分網(wǎng)絡仿真模型

    仿真得到的激勵幅相數(shù)據(jù)如表1所示

     

    1 仿真與PSO優(yōu)化幅相數(shù)據(jù)

    從表1中可以看出,該功分網(wǎng)絡較好的實現(xiàn)了PSO優(yōu)化出的激勵幅相值。

     

     

    3.4整體仿真結果

    10功分網(wǎng)絡與圖6中面陣連接成如圖11的仿真模型

     

    11整體仿真模型

    仿真得到的方位面方向圖與目標方向圖對比如圖12所示

     

    12仿真與目標方向圖對比

    從圖12可見仿真方向圖在-60°~+36°范圍內(nèi)與目標方向圖吻合較好,在此范圍之外與目標方向圖略有差異;這是由于天線對網(wǎng)絡耦合影響了網(wǎng)絡實際輸出的幅度和相位,仿真方向圖在遠離主波束的角度與目標方向圖有些差異;該仿真方向圖總體可以滿足后向防撞雷達BSD,LCA,RCTA三種功能應用。

    4 結論

    本文設計了一種工作在77GHz-79GHz頻段,用于汽車后向防撞雷達的波束賦形陣列天線;首先根據(jù)雷達對于俯仰面方向圖高增益低副瓣的需求,設計了串饋貼片線陣,實現(xiàn)了-22.6dB的副瓣電平;然后將6條線陣等間距排布組成面陣,通過PSO粒子群優(yōu)化算法優(yōu)化出可以實現(xiàn)方位面賦形波束的激勵幅相值;接著設計了1分6的串饋功分網(wǎng)絡實現(xiàn)了優(yōu)化算法得到的激勵幅相,最后將網(wǎng)絡與天線面陣連接完成波束賦形陣列天線的設計。該波束賦形陣列仿真方向圖與目標方向圖吻合較好,對應用于77GHz汽車防撞雷達的賦形天線設計具有一定的參考價值。

     




    推薦閱讀:

    想了解無線傳能充電器是如何工作的嗎? 
    超聲波感應器會被用于何處?——第一部分 
    溫習一下大學的傳感器知識,做開發(fā)這些器件必須精通 
    為什么要將超聲波傳感器用于無人機設計?

     

    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    日本中文字幕在线2020| 毛片无码免费无码播放| 国产精品免费无遮挡无码永久视频| 日韩精品无码一区二区三区免费| 无码137片内射在线影院| AV成人午夜无码一区二区| 日本爆乳j罩杯无码视频| 佐藤遥希在线播放一二区| 日韩精品无码一区二区三区免费 | 欧美中文在线视频| 国产成人无码a区在线视频| 中文字幕乱偷无码AV先锋| 天堂а√中文在线| 中文字幕久久精品无码| 国产成人无码综合亚洲日韩| 最新中文字幕av无码专区| 亚洲日本中文字幕一区二区三区| 在线观看免费无码视频| 东京热加勒比无码视频| 日韩人妻无码精品一专区| 亚洲色偷拍另类无码专区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 亚洲av无码一区二区三区网站| 最近免费中文字幕大全高清大全1| 无码精品人妻一区二区三区影院| 久久久久久久人妻无码中文字幕爆 | 亚洲色偷拍另类无码专区| 免费无码又爽又刺激一高潮| 欧美亚洲精品中文字幕乱码免费高清 | 韩国三级中文字幕hd久久精品| 熟妇人妻中文av无码| 色欲香天天综合网无码| 久久久久无码精品| 日韩精品无码中文字幕一区二区| 色窝窝无码一区二区三区成人网站| 中文有码vs无码人妻| 亚洲精品无码AV人在线播放| 中文无码久久精品| 亚洲成av人片在线观看无码不卡 | 亚洲爆乳无码一区二区三区| 中文字幕人妻无码一夲道|