-
基于壓電主動傳感技術中功率放大器的應用
本實驗將利用壓電陶瓷傳感器,通過模型試驗,對基于時間反演技術的螺栓球節點連接區健康狀態監測方法進行驗,時間反演聚焦信號的峰值只與該信號在結構上傳遞時所經過的傳播路徑的傳遞函數有關,當螺栓球節點內部螺栓發生損壞或未安裝到位(受損狀態)時,相當于傳遞函數發生改變,聚焦信號的峰值也...
2021-08-24
功率放大器 壓電主動傳感技術
-
如何解決高頻信號傳輸領域存在的阻抗失配現象
在高頻領域,信號或電磁波必須沿著具有均勻特征阻抗的傳輸路徑傳播。一旦阻抗失配或不連續現象,一部分信號被反射回發送端,剩余部分電磁波將繼續被傳輸到接收端。
2021-08-24
高頻信號傳輸 阻抗失配
-
微結構不均勻性(負載效應)及其對器件性能的影響:對先進DRAM工藝中有源區形狀扭曲的研究
在DRAM結構中,電容存儲單元的充放電過程直接受晶體管所控制。隨著晶體管尺寸縮小接近物理極限,制造變量和微負載效應正逐漸成為限制DRAM性能(和良率)的主要因素。而對于先進的DRAM,晶體管的有源區 (AA) 尺寸和形狀則是影響良率和性能的重要因素。
2021-08-23
負載效應 DRAM
-
數字IC的高級封裝盤點與梳理
數字 IC 的封裝選項(以及相關的流行詞和首字母縮略詞)繼續成倍增加。微處理器、現場可編程門陣列 (FPGA) 和專用定制 IC (ASIC) 等高級數字 IC 以多種封裝形式提供。
2021-08-23
數字IC 高級封裝
-
英特爾面向 CPU、GPU 和 IPU發布了重大技術架構的改變和創新
在 2021 年英特爾架構日上,英特爾公司高級副總裁兼加速計算系統和圖形事業部總經理 Raja Koduri 攜手多位英特爾架構師,全面介紹了兩種全新 x86 內核架構的詳情;英特爾首個性能混合架構,代號“Alder Lake”,以及智能的英特爾? 硬件線程調度器;專為數據中心設計的下一代英特爾? 至強? 可擴展處理...
2021-08-22
英特爾 CPU GPU IPU
-
開關電源的LLC 拓撲
近來,LLC拓撲以其高效,高功率密度受到廣大電源設計工程師的青睞,但是這種軟開關拓撲對MOSFET的要求卻超過了以往任何一種硬開關拓撲。特別是在電源啟機,動態負載,過載,短路等情況下。CoolMOS 以其快恢復體二極管,低Qg 和Coss能夠完全滿足這些需求并大大提升電源系統的可靠性。
2021-08-22
開關電源 LLC 拓撲
-
如何理解FIT和MTBF
在我們的日常工作中,經常會碰到器件失效或系統故障,這時為了清楚界定失效事件的嚴重性,就需要定量的來描述具體的失效率,這就需要用專業的術語來溝通,而有的工程師喜歡談FIT,有的工程師喜歡談MTBF,其實這兩個概念所描述的主體是不一樣的,因此有必要在此簡析一下。
2021-08-20
FIT MTBF
-
利用SiC FET降低電磁干擾和開關損耗
器件緩沖似乎是處理開關過沖、振鈴和損耗的一種“野蠻”解決方案,而這對于諸如IGBT之類較老的技術來說確實如此。但是,寬禁帶器件,尤其是SiC FET,可以將該技術用為柵極電阻調諧的優良替代方案,以提供較低的總損耗。
2021-08-20
SiC FET 電磁干擾 開關損耗
-
解惑:耦合在電路中的作用?為什么需要耦合?
耦合是指把能量從一個電路傳送另外一個電路中去,耦合在模擬電路和數字電路中非常常見,微弱的信號可以耦合到放大電路進行放大,經過放大的信號同樣可以通過耦合進行輸出。
2021-08-20
耦合電路 模擬電路 數字電路
- 安森美與舍弗勒強強聯手,EliteSiC技術驅動新一代PHEV平臺
- 安森美與英偉達強強聯手,800V直流方案賦能AI數據中心能效升級
- 貿澤電子自動化資源中心上線:工程師必備技術寶庫
- 隔離變壓器全球競爭圖譜:從安全隔離到能源革命的智能屏障
- 芯海科技盧國建:用“芯片+AI+數據”重新定義健康管理
- Nordic nRF5 SDK與Softdevice深度解析:開發BLE應用的底層邏輯與避坑指南
- VW-102A振弦讀數儀接線誤區揭秘:錯接不會燒傳感器,但這些風險更致命
- 氮化鎵電源IC U8726AHE:用Boost技術破解寬電壓供電難題
- 塑封工藝:微電子封裝的“保護鎧甲”與“成型魔術師”
- KiCad膠水層揭秘:SMT紅膠工藝的“隱形固定師”
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall