-
如何使用LTspice獲得出色的EMC仿真結果—第1部分
隨著物聯網互聯設備和5G連接等技術創新成為我們日常生活的一部分,監管這些設備的電磁輻射并量化其EMI抗擾度的需求也隨之增加。滿足EMC合規目標通常是一項復雜的工作。本文介紹如何通過開源LTspice?仿真電路來回答以下關鍵問題:(a) 我的系統能否通過EMC測試,或者是否需要增加緩解技術?(b) 我的設...
2024-02-21
LTspice EMC仿真
-
利用FPGA進行基本運算及特殊函數定點運算
FPGA以擅長高速并行數據處理而聞名,從有線/無線通信到圖像處理中各種DSP算法,再到現今火爆的AI應用,都離不開卷積、濾波、變換等基本的數學運算。但由于FPGA的硬件結構和開發特性使得其對很多算法不友好,之前本人零散地總結和轉載了些基本的數學運算在FPGA中的實現方式,今天做一個系統的總結歸納。
2024-02-21
FPGA 特殊函數 定點運算
-
利用高度集成的處理器,在工廠自動化的過程中加快以太網的應用
對于工廠自動化和流程自動化來說,基于以太網的工業通信不再是一個遙不可及、難以實現的愿景。但由于成本、復雜性和可擴展性的挑戰,串行接口仍是有線通信的標準,鑒于 IO-Link 和 RS-485 的成本效益和可靠性,這也是可以理解的。設計和軟件工程師們也熟悉這些標準。
2024-02-20
處理器 工廠自動化 以太網
-
電子應用中的潛在熱源及各種熱管理方法
電子元器件不喜歡在高溫下運行。任何表現出內部自發熱效應的元器件,都會導致自身和周圍其他元器件的可靠性降低,長期過熱甚至還可能導致印刷電路板(PCB)變形,降低與其他元器件的連接完整性,并影響走線阻抗。通常情況下,容易產生廢熱的元器件包括電源和各種形式的功率放大器[音頻或射頻(RF)...
2024-02-20
潛在熱源 熱管理 電子應用
-
LLC拓撲結構設計要點:如何在更低負載下進入打嗝模式?
在ACDC開關電源設計過程中,當需要實現高效率設計需求時,工程師往往會考慮LLC諧振半橋拓撲結構。LLC拓撲結構可以實現軟開關,因此在開關電源設計尤其是在大功率的開關電源設計過程中往往具有優勢。目前市面上經常可以看到的NCP1399以及NCP13992系列就是安森美(onsemi)LLC拓撲結構控制芯片家族的代...
2024-02-20
LLC拓撲 負載 打嗝模式
-
電源應用中,不同PWM頻率之間的同步設置
在電源項目應用中,有時候不同PWM頻率信號之間需要同步,此時需要一些特殊設置可以實現。本文就介紹其中一種方法,基于dsPIC33CK256MP506實驗平臺,采用ADC分頻觸發事件,結合PWM的PCI同步功能來實現這一需求。
2024-02-20
電源應用 PWM頻率
-
總算搞明白MOS管GS極電阻作用
MOS是電壓驅動元件,對電壓很敏感,懸空的G很容易接受外部干擾使MOS導通,外部干擾信號對G-S結電容充電,這個微小的電荷可以儲存很長時間。
2024-02-19
MOS管 GS極 電阻
-
使用SEMulator3D進行虛擬工藝故障排除和研究
現代半導體工藝極其復雜,包含成百上千個互相影響的獨立工藝步驟。在開發這些工藝步驟時,上游和下游的工藝模塊之間常出現不可預期的障礙,造成開發周期延長和成本增加。本文中,我們將討論如何使用 SEMulator3D?中的實驗設計 (DOE) 功能來解決這一問題。
2024-02-19
SEMulator3D 工藝建模
-
觸發器輸出波形又是如何的呢?
觸發器的輸出方式可能因不同的應用和設計而有所不同。因此,具體判斷觸發器輸出的正負需要結合具體的觸發器類型、輸入信號和設備規格進行分析和判斷。
2024-02-18
觸發器 輸出波形
- 安森美與舍弗勒強強聯手,EliteSiC技術驅動新一代PHEV平臺
- 安森美與英偉達強強聯手,800V直流方案賦能AI數據中心能效升級
- 貿澤電子自動化資源中心上線:工程師必備技術寶庫
- 隔離變壓器全球競爭圖譜:從安全隔離到能源革命的智能屏障
- 芯海科技盧國建:用“芯片+AI+數據”重新定義健康管理
- MBSE智控革命:汽車中控鎖安全開發的新范式
- 光伏運維數智化躍遷:AIoT如何重構電站"神經中樞"
- 算力革命:英飛凌PSOC C3重構空調外機控制新范式
- 高頻PCB電源革命:三階去耦策略破解Gbps時代供電困局
- 雙芯智控革命:IGBT與單片機如何重塑智能微波爐
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall