-
總結:開關電源調試時最常見的10大問題及解決方法
做為工程師的你是否知道開關電源調試時最常見的10個問題呢?以下將詳細分析開關電源調試時,變壓器飽和、Vds過高、IC 溫度過高等常見問題,并且還附上對應的解決方法。
2018-12-06
開關電源 調試
-
無刷電機IPM模塊存在哪些問題?高效逆變器驅動IC將取而代之?
無刷電機(BLDC)能效更高、動態性能更出色和運行噪聲更低,已成為電機驅動設計的必然趨勢,但與此同時,高壓電機IPM模塊存在散熱等許多問題,需要采用新的逆變器驅動IC進行替代。無刷電機——巨大增量市場由于世界各國不斷關注節能問題,使節能型消費類產品的需求持續上升,尤其是電冰箱、洗衣機和空...
2018-12-05
無刷電機 IPM模塊 逆變器 驅動IC PI
-
高可靠性陶瓷電容
陶瓷電容器是由印好電極(內電極)的陶瓷介質膜片以錯位的方式疊合起來,經過一次性高溫燒結形成陶瓷芯片,再在芯片的兩端封上金屬層(外電極),從而形成一個類似獨石的結構體,故也叫獨石電容器。眾所周知,陶瓷易碎,易裂。那么如何讓陶瓷電容做到高可靠性呢?
2018-12-05
高可靠性 陶瓷電容 外部電極
-
USB Type-C電源設計面臨的三大問題
USB Type-C?標準正在迅速獲得推動力,其關鍵亮點之一是可通過USB接口提供高達100瓦功率的機制。USB功率傳輸(USB-PD)功能的采用如今已成為AC適配器、筆記本電腦、平板電腦、智能手機等移動領域的主要趨勢。在下一代USB設計中實現電源傳輸功能時,身份驗證,過壓保護和緊湊外形是關鍵挑戰。
2018-12-05
USB Type-C 電源設計
-
如何區分聚合物鉭電容和普通鉭電容?
鉭電容全稱是鉭電解電容(也有人叫鉭質電容器),屬于電解電容的一種,使用金屬鉭做介質,不像普通電解電容那樣使用電解液,因此適合在高溫下工作,是電容器中體積小而又能達到較大電容量的產品,在電源濾波、交流旁路等用途上少有競爭對手。
2018-11-29
聚合物鉭電容 普通鉭電容
-
SiC MOSFET換流回路雜散電感的提取方法
針對目前雜散電感提取方法存在的問題,本文提出了一種適用于SiC MOSFET換流回路雜散電感的提取方法,并基于SiC功率器件的開關瞬態特性測試平臺對本文所提雜散電感提取方法的可行性進行了驗證。與現有的間接測量方法不同,該方法是基于SiC MOSFET開關瞬態振蕩頻率求解換流回路雜散電感。
2018-11-29
SiC MOSFET 電感
-
功率MOSFET線性區負溫度系數
功率MOSFET工作在線性區用來限制電流,VGS電壓低,通常在負溫度系數區,局部單元過熱導致其流過更大的電流,結果溫度更高,從而形成局部熱點導致器件損壞,這樣就形成一個熱電不穩定性區域ETI (Electro Thermal Instability),發生于VGS低于溫度系數為0(ZTC)的負溫度系數區。
2018-11-29
MOSFET 負溫度系數 電勢
-
電源造成的車輛怠速啟停不穩問題該怎么辦?
怠速啟停時的電池電壓下降引起的功能不全、怠速啟停后的電池電量波動(啟動)引起的誤動作等問題也是亟需要解決的問題。為此,羅姆開發出了優異的低消耗電流和穩定性能(瞬態響應特性,以下簡稱“響應性能”)的升降壓電源芯片組。
2018-11-28
電源 怠速啟停
-
熟知引起電源模塊發熱的四大原因
一摸電源模塊的表面,熱乎乎的,模塊壞了?且慢,有一點發熱,僅僅只是因為它正努力地工作著。但高溫對電源模塊的可靠性影響極其大!基于電源模塊熱設計的知識,這一次,我們扒一扒引起電源模塊發熱的原因。
2018-11-28
電源模塊 電源發熱
- 從失效案例逆推:獨石電容壽命計算與選型避坑指南
- 性能與成本的平衡:獨石電容原廠品牌深度對比
- 精密信號鏈技術解析:從原理到高精度系統設計
- 儀表放大器如何成為精密測量的幕后英雄?
- 儀表放大器如何驅動物聯網終端智能感知?
- 連偶科技攜“中國IP+AIGC+空間計算”三大黑科技首秀西部電博會!
- 優化儀表放大器的設計提升復雜電磁環境中的抗干擾能力
- 戰略布局再進一步:意法半導體2025股東大會關鍵決議全票通過
- μV級精度保衛戰:信號鏈電源噪聲抑制架構全解,拒絕LSB丟失!
- 破解工業電池充電器難題:升壓or圖騰柱?SiC PFC拓撲選擇策略
- 搶占大灣區C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業同臺競逐
- 從單管到并聯:SiC MOSFET功率擴展實戰指南
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall