<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術 > 正文

    現代功率因數PFC補償技術

    發布時間:2023-01-19 責任編輯:lina

    【導讀】在上世紀五十年代,已經針對具有感性負載的交流用電器具的電壓和電流不同相(圖1)從而引起的供電效率低下提出了改進方法(由于感性負載的電流滯后所加電壓,由于電壓和電流的相位不同使供電線路的負擔加重導致供電線路效率下降,這就要求在感性用電器具上并聯一個電容器用以調整其該用電器具的電壓、電流相位特性,例如:當時要求所使用的40W日光燈必須并聯一個4.75μF的電容器)。


    在上世紀五十年代,已經針對具有感性負載的交流用電器具的電壓和電流不同相(圖1)從而引起的供電效率低下提出了改進方法(由于感性負載的電流滯后所加電壓,由于電壓和電流的相位不同使供電線路的負擔加重導致供電線路效率下降,這就要求在感性用電器具上并聯一個電容器用以調整其該用電器具的電壓、電流相位特性,例如:當時要求所使用的40W日光燈必須并聯一個4.75μF的電容器)。用電容器并連在感性負載,利用其電容上電流超前電壓的特性用以補償電感上電流滯后電壓的特性來使總的特性接近于阻性,從而改善效率低下的方法叫功率因數補償(交流電的功率因數可以用電源電壓與負載電流兩者相位角的余弦函數值cosφ表示)。


    現代功率因數PFC補償技術

    圖1在具有感性負載中供電線路中電壓和電流的波形


    而在上世紀80年代起,用電器具大量的采用效率高的開關電源,由于開關電源都是在整流后用一個大容量的濾波電容,使該用電器具的負載特性呈現容性,這就造成了交流220V在對該用電器具供電時,由于濾波電容的充、放電作用,在其兩端的直流電壓出現略呈鋸齒波的紋波。濾波電容上電壓的最小值遠非為零,與其最大值(紋波峰值)相差并不多。根據整流二極管的單向導電性,只有在AC線路電壓瞬時值高于濾波電容上的電壓時,整流二極管才會因正向偏置而導通,而當AC輸入電壓瞬時值低于濾波電容上的電壓時,整流二極管因反向偏置而截止。也就是說,在AC線路電壓的每個半周期內,只是在其峰值附近,二極管才會導通。雖然AC輸入電壓仍大體保持正弦波波形,但AC輸入電流卻呈高幅值的尖峰脈沖,如圖2所示。這種嚴重失真的電流波形含有大量的諧波成份,引起線路功率因數嚴重下降。


    在正半個周期內(1800),整流二極管的導通角大大的小于1800甚至只有300-700,由于要保證負載功率的要求,在極窄的導通角期間會產生極大的導通電流,使供電電路中的供電電流呈脈沖狀態,它不僅降低了供電的效率,更為嚴重的是它在供電線路容量不足,或電路負載較大時會產生嚴重的交流電壓的波形畸變(圖3),并產生多次諧波,從而,干擾了其它用電器具的正常工作(這就是電磁干擾-EMI和電磁兼容-EMC問題)。


    現代功率因數PFC補償技術


    圖2自從用電器具從過去的感性負載(早期的電視機、收音機等的電源均采用電源變壓器的感性器件)變成帶整流及濾波電容器的容性負載后,其功率因素補償的含義不僅是供電的電壓和電流不同相位的問題,更為嚴重的是要解決因供電電流呈強脈沖狀態而引起的電磁干擾(EMI)和電磁兼容(EMC)問題。


    現代功率因數PFC補償技術


    這就是在上世紀末發展起來的一項新技術(其背景源于開關電源的迅速發展和廣泛應用)。其主要目的是解決因容性負載導致電流波形嚴重畸變而產生的電磁干擾(EMl)和電磁兼容(EMC)問題。所以現代的PFC技術完全不同于過去的功率因數補償技術,它是針對非正弦電流波形畸變而采取的,迫使交流線路電流追蹤電壓波形瞬時變化軌跡,并使電流和電壓保持同相位,使系統呈純電阻性技術(線路電流波形校正技術),這就是PFC(功率因數校正)。


    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


    推薦閱讀:

    如何在典型增益控制電路中配置運算放大器

    最大限度地減少音頻系統中模擬開關的總諧波失真

    使用RX單片機實現數字電源控制的示例

    無線通信中如何排查電磁波干擾?

    雙電源開關工作原理


    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    久久精品中文字幕大胸| 日韩精品真人荷官无码| 中文 在线 日韩 亚洲 欧美| 亚洲av无码片vr一区二区三区| 免费无码国产欧美久久18| 亚洲日本va午夜中文字幕久久| 日韩精品一区二三区中文| 中文字幕日韩三级片| 最近的中文字幕在线看视频| 国产乱人伦Av在线无码| 99久久无码一区人妻| 人妻无码久久精品| 亚洲不卡中文字幕无码| 欧美亚洲精品中文字幕乱码免费高清 | AV无码久久久久不卡蜜桃| 无码福利写真片视频在线播放| 无码中文人妻视频2019| 中文字幕成人精品久久不卡| 狠狠精品久久久无码中文字幕| 天堂√中文最新版在线下载| 中文字幕丰满乱子伦无码专区| 97久久精品无码一区二区天美| 亚洲国产无套无码av电影| 18禁无遮拦无码国产在线播放| 色噜噜综合亚洲av中文无码 | 亚洲美日韩Av中文字幕无码久久久妻妇 | 中文成人久久久久影院免费观看| 中文字幕无码精品亚洲资源网久久 | 中文字幕无码av激情不卡久久| 中文字幕国产在线| 欧美成人中文字幕在线看| 狠狠干中文字幕| 久久久久亚洲Av无码专| 久久亚洲2019中文字幕| 痴汉中文字幕视频一区| 无码人妻少妇久久中文字幕蜜桃| 亚洲一区无码精品色| 午夜福利av无码一区二区| 亚洲性无码一区二区三区 | 精品无码久久久久国产| 精品国精品无码自拍自在线|