<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術 > 正文

    SiC Traction模塊的可靠性基石AQG324

    發布時間:2023-07-10 責任編輯:lina

    【導讀】前面的文章,和大家分享了安森美(onsemi)在襯底和外延的概況,同時也分享了安森美在器件開發的一些特點和進展。到這里大家對于SiC的產業鏈已經有一定的了解了。也就是從襯底到芯片,對于一個SiC功率器件來說只是完成了一半的工作,還有剩下一半就是這次我們要分享的封裝。好的封裝才能把SiC的性能發揮出來,這次我們會從AQG324這個測試標準的角度來看芯片和封裝的開發與驗證。


    前面的文章,和大家分享了安森美(onsemi)在襯底和外延的概況,同時也分享了安森美在器件開發的一些特點和進展。到這里大家對于SiC的產業鏈已經有一定的了解了。也就是從襯底到芯片,對于一個SiC功率器件來說只是完成了一半的工作,還有剩下一半就是這次我們要分享的封裝。好的封裝才能把SiC的性能發揮出來,這次我們會從AQG324這個測試標準的角度來看芯片和封裝的開發與驗證。


    圖一是SSDC模塊的剖面示意圖,圖二是整個SSDC模塊的結構圖,從圖一和圖二我們可以發現這個用在主驅的功率模塊還是比較復雜的,里面包含了許多的零部件。我們怎么保證這個SSDC功率模塊能在汽車的應用環境下達到預期的工作壽命?

     

    SiC Traction模塊的可靠性基石AQG324

    圖一SSDC模塊剖面示意圖


     SiC Traction模塊的可靠性基石AQG324

    圖二SSDC模塊的結構圖


    相信很多的汽車主驅相關的工程師和廣大行業從業人員都了解到,汽車功率模塊的開發過程中有一個非常重要的測試標準,這就是AQG324,它是歐洲電力電子中心(European Center for Power Electronics)主導的測試標準,AQG 324代表了一個基于最佳實踐和卓越需求的行業指南。它是汽車功率模塊的一個基本標準,也就是說是個門檻,只有完成了根據它的測試規范設計的測試計劃才能得到廣大的車廠認可。所以滿足AQG324只是一個基本的要求。由于它是一個行業標準不是強制性的,最終的決定權取決于最終的用戶。安森美所有的汽車級SiC功率模塊都是通過了AQG324的測試規范。新研發的SiC功率模塊則完全滿足最新的AQG324規范。AQG324目前最新版本是發布于31.05.2021,這個版本比之前的多了一些針對SiC的內容,這一部分附加的部分是針對SiC等三代半半導體的,前面的測試規范是針對硅基半導體。所以當前的絕大多數做車規功率模塊的廠家都會也都要研究這個測試規范。圖三是安森美最新的SiC功率模塊AQG324兼容性

     

    SiC Traction模塊的可靠性基石AQG324

    圖三安森美AQG324規范兼容性


    為了方便理解封裝的測試開發,用圖四的項目開發表為例子,這樣會有助于理解整個模塊的開發流程。


    SiC Traction模塊的可靠性基石AQG324

    圖四項目開發簡表


    我們會發現在項目開始之后會做不同的DOE,還有不同的前期的驗證測試計劃,最后才開始正式的AQG324,實際的項目會遠比這個復雜,這里僅僅是一個簡單的示意。為什么我們需要這些流程?AQG324都有哪些內容?


    其實所有的前期驗證測試都是基于AQG324的測試標準針對特定的一些項目展開的,當這些項目都滿足要求之后才會正式的開始制作B樣,開始進行完整的AQG324測試,樣品通過測試之后就能得到C樣,然后開始準備量產相關工作。


    圖五是AQG324里的模塊測試相關項


     SiC Traction模塊的可靠性基石AQG324

    圖五AQG324模塊測試相關項


    最左邊一列可以說就是AQG324的測試項目,至于具體的測試條件和開發的模塊等有關系。這些都是Si的測試項。


    下面把AQG324大致展開來看一下,它都測試哪些內容,它背后的邏輯是怎樣的。


    圖六是AQG324的框架,從這個AQG324的框架我們可以看出它的背后的邏輯。

     

    SiC Traction模塊的可靠性基石AQG324

    圖六AGQ324框架


    首先特性測試確保參加測試的模塊的基本特性,建立一個特性參數的標準,用來和后面的一些壽命相關測試比對,作為失效的判斷標準。環境測試則側重于一些機械特性相關的測試。壽命測試則從各方面考核了模塊封裝以及芯片的可靠性,并且通過功率循環測試結合汽車廠商的路譜(mission profile)可以計算出功率模塊的壽命。這個就是AQG324的一個目的,通過一系列的測試來推算出功率模塊的使用壽命。


    圖七是平面結構的SiC結構示意圖以及SiC功率模塊的結構示意圖。從圖七(a)可以看到芯片也是一層一層的堆疊起來的,一般MOS的芯片差不多在15-20層之間。AQG324的壽命測試里的HTGB,HTRB以及H3TRB和HTSL/LTS等主要是對SiC的芯片各層進行了測試,而功率循環則是向上文所展開的那樣對芯片和下面的陶瓷基板以及散熱基板的連接部分進行了測試。其實測試只是最后的驗證考核的手段之一,整個項目從一開始就要針對這些測試可能會照成的失效進行有針對性的設計。所以從芯片的研發、生產的工藝以及模塊的研發和生產工藝都要針對AGQ324來展開。這也就是我們常說的“design for Quality”

     

    SiC Traction模塊的可靠性基石AQG324

    圖七 SiC芯片結合和SiC功率模塊結構


    圖八是硅基功率模塊和WBG功率模塊差異部分。它們的差異主要是集中在壽命測試相關的項目。

     

    SiC Traction模塊的可靠性基石AQG324

    圖八 AQG324Si和SiC測試差異


    下面我們將從功率循環、高溫反偏、高低溫反偏等幾個方面來展開,看看在AQG324測試中對SiC功率模塊的哪些方面進行了測試,有哪些方面的挑戰


    功率循環測試 Power Cycling 


    這里有兩個條件一個是分鐘級別的一個是秒級的。我們可以從圖八的溫度曲線看出它們的差異。

     

    SiC Traction模塊的可靠性基石AQG324

    圖九 PC_Sec Vs PC_Min


    I. 在秒級的功率循環里,由于Ton和Toff的時間比較短,所以可以看到芯片的節溫會上升比較快,但是Tc也就是外殼的溫度上升比較緩慢,這樣的沖擊其實對于和芯片接觸的地方相對來說會集中一些,也就是主要側重于測試芯片bonding和芯片與下面基板焊接的可靠性。


    II. 在分鐘級別的功率循環里,由于開關周期比較長,所以Tc的變化會比較大,同時溫度也是以Tc為準,這樣的話對于基板和下面的散熱器的焊接處的沖擊相對會大一些,所以我們可以理解為它側重于測試基板和下面的散熱器的焊接性能。


    這兩個功率循環的測試,對于Si和SiC來說,是相似的,但是由于SiC可以承受更高的工作溫度,現在有不少的廠家在針對SiC的功率循環測試里把Tvjmax=200度也加到了測試條件里。安森美的SiC功率模塊新的也都有做一些針對性的測試。由于SiC芯片和IGBT芯片相比面積要小不少,所以熱阻也要大不少,在這里對于SiC芯片的互聯技術就提出了一定的挑戰,這里就包含了SiC的源極的互連,傳統的bonding線,它們的功率循環的次數和相同條件下的比如clip的焊接等方法比就要略差一些。


    功率循環還有一個作用就是可以把生產工藝中的一些致命缺陷暴露出來,由于整個芯片是由成千上萬個基礎的開關單元構成的,這些單元中任一個單元如果有一些致命的缺陷,那么在功率循環中會加速它們的老化然后導致失效,從而導致整個功率循環次數降低。

    圖十是節選自AQG324的一些典型的功率循環失效模式。從這里我們可以清晰的看到秒級功率循環導致的bonding線脫落,芯片的金屬層退化導致焊接質量下降。分鐘級的功率循環導致的DBC裂痕等失效現象。

     

    SiC Traction模塊的可靠性基石AQG324

    圖十典型的功率循環失效模式


    High-temperature gate bias (HTGB)高溫柵極偏壓測試


    由于SiC的Vgs在偏壓的條件下會隨著時間的累加而漂移,因此HTGB可以模擬加速條件下的工作狀態,用于芯片的可靠性驗證和門極的可靠性監測。并且可以發現由于生產過程中導致的一些材料污染。對于Si和SiC器件和模塊來說HTGB都是強制要求的。


    Dynamic gate stress (DGS)


    室溫下的DGS測試對于SiC功率模塊來說是必須的,現在這個測試的條件還在討論當中還沒有最終定稿。這個測試不僅僅涉及到芯片也涉及到模塊,因為現在的SiC功率模塊大多數都有多個SiC的芯片來并聯達到大電流的輸出能力,那么模塊的layout也會影響到芯片的Vgs,這也是為什么針對SiC功率模塊必須要考慮DGS測試。如果設計的不好,在動態條件下SiC的Vgs會飄移同時也會導致Rdson增加進而導致效率降低。


    SiC Traction模塊的可靠性基石AQG324

    圖十一 Dynamic gate stress 


    我們在圖十二可以看懂不同的失效模式,這些都可以通過HTGB和DGS測試發現。

     

    SiC Traction模塊的可靠性基石AQG324

    圖十二各種HTGB失效模式


    High-temperature reverse bias (HTRB)


    可以很好的檢測出來芯片的鈍化層結構或者是芯片的終端結構的缺陷,同時生產中或者封裝材料里的有害的一些離子污染也可以通過這個測試發現,同時由于功率模塊的不同的材料間的溫度膨脹系數也會導致芯片的鈍化層完整性受到破壞,這個測試對于Si或者SiC來說是相似的,但是對于SiC的模塊來說動態的反偏測試是強烈建議的。


    1.1.1 Dynamic reverse bias (DRB)

    DRB對于IGBT是不做要求的,需要注意的一點是對于DRB,如果在AECQ101沒有做過這個測試,那么在SiC的功率模塊是必須要做的。這個測試的目的是通過高dv/dt對內部鈍化層結構進行充放電進而使芯片加速老化。

     

    SiC Traction模塊的可靠性基石AQG324

    圖十三Dynamic reverse bias


    High-humidity, high-temperature reverse bias (H3TRB)

    這個測試為了驗證整個模塊結構中的薄弱環節,包括功率半導體本身。大多數模塊設計很難做到完全密封。半導體芯片和接合線嵌入可滲透濕氣的硅膠中。這允許濕氣隨著時間的推移也到達鈍化層。芯片鈍化層結構或鈍化拓撲結構中的弱點以及芯片邊緣密封中的弱點在濕度的影響下受到負載的不同影響。污染物也可以通過濕氣傳輸轉移到關鍵區域。從而導致失效。

    對于 H3TRB是Si和SiC差別比較大的地方。 圖十四是針對SiC的H3TRB的測試條件。它和針對Si的IGBT的條件差別就是加在器件上的電壓不一樣。Si的要求是強制要求80V,而SiC則是必須80%的VDSmax。

     

    SiC Traction模塊的可靠性基石AQG324

    圖十四 SiC H3TRB


    圖十五我們可以看到在H3TRB測試中由于器件的設計或者模塊封裝原因導致的一些失效。也說明這個測試是比較有效的可以發現edge terminal設計,封裝,鈍化層等等方面的缺陷。

     

    SiC Traction模塊的可靠性基石AQG324

    圖十五 H3TRB缺陷


    (dyn.H3TRB)

    這個測試是專門針對SiC功率模塊的,該測試是SiC模塊技術的附加通用芯片可靠性測試。這個測試項目還沒最終定稿。由于SiC的dv/dt比IGBT等Si器件要高很多,所以針對這個高dv/dt條件下,芯片和模塊的薄弱環節是否能被檢測出來?這個標準還在探索中。當然即使是這樣,安森美最新的SiC功率模塊也都會進行相關的測試。


    SiC Traction模塊的可靠性基石AQG324

    圖十六 dyn.H3TRB


    下面的兩項目前還在研究當中


    High-temperature forward bias (HTFB)


    Dynamic forward bias (DHTFB)


    從上面的文章我們可以發現針對SiC功率模塊的測試標準還沒有定稿,還有一些項目沒有完全確定,這是因為SiC的應用和器件還在發展中。安森美作為一家垂直整合了整個SiC供應鏈的IDM,也在密切的關注和跟隨著AQG324的發展,并在最新的產品開發中應用它來保證自己的產品的可靠性。


    通過上文的分析我們了解到了AQG324測試標準從各方面測試了SiC功率模塊的性能,里面涉及到芯片和封裝等,它是一個比較全面的測試。但是一個功率模塊通過AQG324的測試,僅僅代表了整個功率模塊的工藝等通過了基本的測試和驗證。整個模塊的可靠性是通過芯片研發、芯片工藝、模塊研發、模塊工藝、封裝和測試等一個完整體系的保證,不是簡單的某一個步驟能保證的。


    下面的兩個功率模塊是安森美前兩年量產的SiC功率模塊


    圖十六是塑封半橋的SiC功率模塊,圖十七是SSDC的三相橋模塊。目前都已經在各大車廠獲得了廣泛的應用。說明了安森美的SiC功率模塊在經過AQG324測試之后表現出來的質量穩定性獲得了相關客戶的認可。


    SiC Traction模塊的可靠性基石AQG324

    圖十七 半橋塑封SiC功率模塊


     SiC Traction模塊的可靠性基石AQG324

    圖十八 三相橋SSDC 900V SiC功率模塊


    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


    推薦閱讀:

    串行器應用之如何將攝像頭的RGB或YUV輸出轉換成RGB數據?

    ADC噪聲:從何而來?

    真雙極性輸入、全差分輸出ADC驅動器設計

    “國產芯片”瑞森半導體(REASUNOS)將亮相2023慕尼黑上海電子展

    利用分布式天線系統解決方案改進蜂窩網絡覆蓋性能

    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    无码人妻一区二区三区在线| 中文字幕av无码一区二区三区电影 | 日韩欧美成人免费中文字幕| 国产精品亚韩精品无码a在线| 亚洲av午夜国产精品无码中文字| 精品无码无人网站免费视频| 婷婷四虎东京热无码群交双飞视频 | 国产精品无码DVD在线观看| 中文字幕精品久久| 中文国产成人精品久久不卡 | 无码中文字幕日韩专区| 伊人久久综合无码成人网| 天堂√在线中文最新版| 久久无码AV中文出轨人妻| 无码专区中文字幕无码| 久久精品中文字幕一区| 人妻中文无码久热丝袜| 日韩精品无码永久免费网站| 熟妇人妻AV无码一区二区三区| 精品深夜AV无码一区二区老年 | 99久久超碰中文字幕伊人| 欧美 亚洲 日韩 中文2019| av无码久久久久不卡免费网站 | 久久精品无码专区免费东京热 | 亚洲V无码一区二区三区四区观看| 欧美亚洲精品中文字幕乱码免费高清| 中文字幕无码人妻AAA片| 亚洲av无码国产精品色在线看不卡 | 无码精品人妻一区二区三区人妻斩 | 精品久久久无码中文字幕天天 | 在线中文字幕视频| 欧美视频中文字幕| 日本久久久精品中文字幕| 熟妇人妻中文字幕无码老熟妇| 亚洲Av无码国产情品久久| 久久久久无码专区亚洲av| 丰满岳乱妇在线观看中字无码| 18禁免费无码无遮挡不卡网站 | 国产精品VA在线观看无码不卡| 久久AV高清无码| 国产精品毛片无码|