<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電路保護 > 正文

    第12講:三菱電機高壓SiC芯片技術

    發布時間:2024-12-22 責任編輯:lina

    【導讀】三菱電機開發了高耐壓SiC MOSFET,并將其產品化,率先將其應用于驅動鐵路車輛的變流器中,是一家在市場上擁有良好業績記錄的SiC器件制造商。本篇帶你了解三菱電機高壓SiC芯片技術。


    三菱電機開發了高耐壓SiC MOSFET,并將其產品化,率先將其應用于驅動鐵路車輛的變流器中,是一家在市場上擁有良好業績記錄的SiC器件制造商。本篇帶你了解三菱電機高壓SiC芯片技術。

    通過使用SiC,可實現額定電壓3.3kV以上的高耐壓MOSFET。由于MOSFET是單極性器件,少數載流子不會積聚,所以能夠實現極低的開關損耗。一般來說,由于高耐壓模塊所處理的電流大,需要將功率損耗引起的發熱控制在容許值以下,因此將載波頻率(開關頻率)設置得較低。但通過使用SiC MOSFET,系統能夠使用高載波頻率,可為系統提供諸如高性能、小型化等前所未有的優點。

    高耐壓SiC MOSFET的漂移層電阻和JFET區域電阻占導通電阻的比例較大。由于漂移層的電阻是由擊穿電壓和物理特性值決定的,很難通過設計來降低漂移層的電阻。因此,通過優化JFET區域設計來降低電阻非常重要。在JFET區域的設計中,在降低電阻的同時,為了確保可靠性,還需要抑制最大電場強度。如第11講所述,通過使用在第二代SiC MOSFET開發中獲得的JFET摻雜技術,實現了兼具低電阻和高可靠性的3.3kV SiC MOSFET。此外,高耐壓SiC MOSFET還需要考慮的性能是短路耐受能力。當施加高電壓時,必須進一步減小短路電流以保證器件免受短路故障的影響。SiC MOSFET短路電流的抑制伴隨著導通電阻的增加,因此設計時必須考慮這些特性的平衡。

    圖1表示3.3kV SiC MOSFET模塊的正向特性。圖中還顯示了與SiC MOSFET具有相同有效面積的Si IGBT的正向特性。在低電流區域,與存在內建電勢的Si IGBT相比,SiC MOSFET的通態電壓大幅降低。這是SiC MOSFET的一大優點。


    第12講:三菱電機高壓SiC芯片技術

    圖1:3.3kV SiC MOSFET模塊的正向特性


    作為下一代的高耐壓SiC MOSFET,三菱電機開發了第三代SBD嵌入式SiC MOSFET,并于2024年將第一個配備該芯片的SiC模塊商業化。如第5講所述,SiC晶體中存在少量晶體缺陷,這些缺陷在通過雙極電流時使器件特性惡化。在芯片并聯數較多的高耐壓大電流模塊中,包含該缺陷的概率變高,因此在正常工作時,為了避免雙極電流流過,開發了將肖特基二極管嵌入在MOS元胞內的SiC MOSFET。

    圖2顯示了SBD嵌入式SiC MOSFET與常規MOSFET的橫截面結構圖。在SBD嵌入式SiC MOSFET中,在與源極接觸的部分形成肖特基接觸。當向MOSFET施加反向電壓時,肖特基電流(單極電流)通過MOSFET,以抑制體二極管導通引起的雙極電流。


    第12講:三菱電機高壓SiC芯片技術圖2(a):常規3.3kV SiC MOSFET的MOS元胞截面圖

    第12講:三菱電機高壓SiC芯片技術圖2(b):3.3kV SBD嵌入式SiC MOSFET的MOS元胞截面圖


    圖3顯示了SBD嵌入式SiC MOSFET的正向特性。漏極電流和漏極電壓的正向特性與常規SiC MOSFET相同。圖4顯示了SBD嵌入式SiC MOSFET的反向特性。在關閉柵極的情況下,向MOSFET施加反向電壓時,在常規結構中,在超過約2.5V時,MOSFET的體二極管會流過雙極性電流。另一方面,在SBD嵌入式SiC MOSFET中,從約1V開始,流過單極性的肖特基電流,沒有來自體二極管的電流流過。因此,不會因雙極導通而帶來的劣化。


    第12講:三菱電機高壓SiC芯片技術圖3:SBD嵌入式SiC MOSFET的正向特性

    第12講:三菱電機高壓SiC芯片技術

    圖4:SBD嵌入式SiC MOSFET的反向特性


    SBD嵌入式SiC MOSFET的挑戰之一是其低浪涌電流能力。對此,三菱電機開發了一種獨特的MOS元胞結構,該結構僅在浪涌電流流過時以雙極方式工作。通過將該MOS元胞集成到SBD嵌入式SiC MOSFET中,成功地大幅提高了浪涌電流能力。


    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


    我愛方案網


    推薦閱讀:

    一文看懂電壓轉換的級聯和混合概念

    意法半導體推出首款超低功耗生物傳感器,成為眾多新型應用的核心所在

    是否存在有關 PCB 走線電感的經驗法則?

    運算放大器參數的簡易測量“指南”

    【“源”察秋毫系列】DC-DC電源效率測試,確保高效能與可靠性的關鍵步驟

    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    日本久久久精品中文字幕| 亚洲国产精品无码专区在线观看| 国产成人无码AV麻豆| 国产成人精品无码播放| 无码人妻丰满熟妇区BBBBXXXX| 无码任你躁久久久久久久| 亚洲AV日韩AV永久无码免下载| 日韩国产中文字幕| 亚洲AV永久无码精品一区二区| 无码人妻精品一区二区三区66| 亚洲国产人成中文幕一级二级| 蜜臀AV无码国产精品色午夜麻豆| 亚洲Av无码专区国产乱码DVD| 最近最新中文字幕高清免费| 婷婷色中文字幕综合在线 | 欧美乱人伦人妻中文字幕| 久久人妻少妇嫩草AV无码蜜桃| 亚洲AV无码成人网站久久精品大 | 最近中文字幕电影大全免费版| 亚洲成在人线在线播放无码| 人禽无码视频在线观看| 亚洲AV无码国产精品色午友在线 | av无码人妻一区二区三区牛牛 | 波多野结衣中文在线| 中文在线天堂网WWW| 一本大道久久东京热无码AV | 亚洲AV无码之日韩精品| 狠狠精品干练久久久无码中文字幕| 午夜福利无码不卡在线观看| 亚洲AV无码乱码国产麻豆穿越| 97无码人妻福利免费公开在线视频| 亚洲日韩欧美国产中文| 亚洲中文字幕无码爆乳av中文| 无码中文字幕日韩专区| 久久久这里有精品中文字幕| 日韩欧美中文字幕一字不卡| 最近高清中文在线国语字幕5| 久久精品一区二区三区中文字幕| 中文字幕14页影音先锋| 合区精品久久久中文字幕一区| 中文无码熟妇人妻AV在线|