<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電源管理 > 正文

    Si對比SiC MOSFET 改變技術(shù)—是正確的做法

    發(fā)布時(shí)間:2023-01-04 來源:儒卓力 責(zé)任編輯:wenwei

    【導(dǎo)讀】相比基于硅(Si)的MOSFET,基于碳化硅(SiC)的MOSFET器件可實(shí)現(xiàn)更高的效率水平,但有時(shí)難以輕易決定這項(xiàng)技術(shù)是否更好的選擇。本文將闡述需要考慮哪些標(biāo)準(zhǔn)因素。


    超過 1000 V 電壓的應(yīng)用通常使用IGBT解決方案。但現(xiàn)在的SiC 器件性能卓越,能夠?qū)崿F(xiàn)快速開關(guān)的單極組件,可替代雙極 IGBT。這些SiC器件可以在較高的電壓下實(shí)施先前僅僅在較低電壓 (<600 V) 下才可行的應(yīng)用。與雙極 IGBT 相比,這些基于 SiC 的 MOSFET 可將功率損耗降低多達(dá) 80%。


    5.png


    英飛凌進(jìn)一步優(yōu)化了 SiC器件的優(yōu)勢特性——通過使用CoolSiC Trench 技術(shù),可以實(shí)現(xiàn)具有極高閾值電壓 (Vth) 和低米勒電容的 MOSFET器件。相比其他 SiC MOSFET ,它們對于不良的寄生導(dǎo)通效應(yīng)更具彈性。除了 1200 V 和 1700 V 型號之外,英飛凌還擴(kuò)展了產(chǎn)品組合,加入了650 V CoolSiC MOSFET,該器件也可用于 230 V 電源應(yīng)用。這些SiC器件具有更高的系統(tǒng)效率和穩(wěn)健性,以及更低的系統(tǒng)成本,適用于電信、服務(wù)器、電動汽車充電站和電池組等應(yīng)用。


    如果在基于Si的成熟MOSFET技術(shù),和基于 SiC 的較新 MOSFET之間進(jìn)行選擇,需要考慮多種因素。


    應(yīng)用效率和功率密度


    與Si器件相比,SiC器件的RDSon在工作溫度范圍內(nèi)不易發(fā)生波動。使用基于 SiC 的 MOSFET,RDSon 數(shù)值在 25°C到100°C溫度之間僅僅偏移大約 1.13 倍,而使用典型的基于Si MOSFET(例如英飛凌的 CoolMOSTM C7器件)時(shí),RDSon 則會偏移1.67 倍。這表明針對基于SiC 的 MOSFET器件,工作溫度對于功率損耗的影響要小得多,因而可以采用高得多的工作溫度。因此,基于 SiC 的 MOSFET 非常適合高溫應(yīng)用,或者可以使用較簡單的冷卻解決方案來實(shí)現(xiàn)相同的效率水平。


    1669974143518293.png

    圖片來源:儒卓力


    與 IGBT 相比,基于 SiC 的 MOSFET 具有較低的電導(dǎo)損耗以及可降低多達(dá) 80% 的開關(guān)損耗。(在使用英飛凌650 V CoolSiC MOSFET的示例中)


    驅(qū)動器


    當(dāng)從Si轉(zhuǎn)換到SiC時(shí),其中一個(gè)問題是選擇合適的驅(qū)動器。如果基于Si的 MOSFET 驅(qū)動器產(chǎn)生的最高柵極導(dǎo)通電壓不超過15 V,它們通常可以繼續(xù)使用。然而,高達(dá) 18 V柵極導(dǎo)通電壓可以進(jìn)一步顯著降低電阻 RDSon(在 60°C 時(shí)可降低多達(dá) 18%),因此,值得考慮改用其它驅(qū)動器。


    另外還建議避免在柵極處出現(xiàn)負(fù)電壓,因?yàn)檫@會導(dǎo)致 VGS(th)發(fā)生偏移,從而使 RDSon 隨著工作時(shí)間延長而增加。在柵極驅(qū)動環(huán)路中,源極電感上的電壓降導(dǎo)致高 di/dt,這可能引起負(fù)VGS(off)電平。很高的 dv/dts 帶來了更大的挑戰(zhàn),這是由于半橋配置中第二個(gè)開關(guān)的柵極漏極電容引起的。可以通過降低 dv/dt 來避免這個(gè)問題,但代價(jià)是效率的下降。


    限制負(fù)柵極電壓的最佳方法是通過開爾文源極概念使用單獨(dú)的電源和驅(qū)動器電路,并集成二極管鉗位。位于開關(guān)的柵極和源極之間的二極管鉗位限制柵極出現(xiàn)負(fù)電壓。


    反向恢復(fù)電荷 Qrr


    特別針對使用導(dǎo)通體二極管進(jìn)行連續(xù)硬換向的諧振拓?fù)浠蛟O(shè)計(jì),還必須考慮反向恢復(fù)電荷 Qrr。當(dāng)二極管不再導(dǎo)電時(shí),這是必須從集成的體二極管中去除的電荷(存在于所有二極管中)。各組件制造商都做出了巨大的努力,以便盡可能地降低這種電荷。英飛凌的“Fast Diode CoolMOS”系列就是這些努力成果的示例。它們具有更快速的體二極管,與前代產(chǎn)品相比,可以將 Qrr 降低 10 倍。英飛凌的 CoolSiC 系列在這方面取得了進(jìn)步,與最新的 CoolMOS 組件相比,這些SiC MOSFET 實(shí)現(xiàn)了10 倍的性能改進(jìn)。


    1669974129247168.png


    Trench 技術(shù)極大程度地減少了使用中的功率損耗,并提供了極高的運(yùn)行可靠性。


    采用CoolSiC技術(shù),用戶可以開發(fā)具有更少組件和磁性元件及散熱器的系統(tǒng),從而簡化系統(tǒng)設(shè)計(jì),并減低體積和成本。借助Trench 技術(shù),這些組件還保證達(dá)到極低的使用損耗和極高的運(yùn)行可靠性。


    功率因數(shù)校正 (PFC)


    目前行業(yè)的重點(diǎn)是提高系統(tǒng)效率。為了實(shí)現(xiàn)至少 98% 的效率數(shù)值,業(yè)界針對功率因數(shù)校正 (PFC)付出了很多努力。具備優(yōu)化 Qrr 的 基于SiC MOSFET 有助于實(shí)現(xiàn)這一目標(biāo)。它們可以實(shí)現(xiàn)用于PFC的硬開關(guān)半橋/全橋拓?fù)洹a槍oolMOS 技術(shù),英飛凌先前推薦“三角電流模式(Triangular Current Mode)”方法,但使用 SiC 器件可以實(shí)現(xiàn)具有連續(xù)導(dǎo)通模式的圖騰柱 PFC。


    輸出電容 COSS


    在硬開關(guān)拓?fù)渲斜仨毾拇鎯Φ哪芰?EOSS;對于最新的 CoolMOS型款,這種能量通常較大。然而,與圖騰柱 PFC 的導(dǎo)通損耗相比,它仍然相對較低,因此可以忽略不計(jì),至少初期如此。較低的電容意味著可以從更快的開關(guān)速度中受益,但這也可能引起導(dǎo)通期間的漏極源極電壓過沖 (VDS)。


    針對基于Si的 MOSFET,可以通過使用外部柵極電阻加以補(bǔ)償,以降低開關(guān)速率,并且在漏源處實(shí)現(xiàn)所需的 80% 電壓降額。這種解決方案的缺點(diǎn)是增加電流會導(dǎo)致更多開關(guān)損耗,尤其是在關(guān)斷期間。


    在50 V漏源電壓下,基于 SiC 的 MOSFET 的輸出電容要大于可比較的基于 Si 的功率半導(dǎo)體器件,但 COSS/VDS 的關(guān)系更加線性。其結(jié)果是,相比基于 Si 的MOSFET型款,基于 SiC 的 MOSFET 允許在相同的電路中使用較低的外部電阻,而不會超出最大漏源電壓。這在某些電路拓?fù)渲惺怯欣模缭?LLC 諧振 DC/DC 轉(zhuǎn)換器中,可以省去額外的柵極電阻器。


    結(jié)論


    盡管SiC技術(shù)擁有諸多優(yōu)勢,但基于Si的 MOSFET不一定會過時(shí)。部分原因是由于體二極管的閾值電壓要高得多,直接使用基于 SiC 的型款來替換基于 Si 的 MOSFET,將會導(dǎo)致體二極管的功率損耗增加四倍,基本上抵消了效率增益。如要真正受益于基于 SiC 的 MOSFET 的更高效率,必須在 MOSFET 通道上使用 PFC 的升壓功能,而不是在體二極管上反向使用。還必須優(yōu)化死區(qū)時(shí)間性能,以充分利用基于 SiC 的 MOSFET 的優(yōu)勢。


    作者:儒卓力功率產(chǎn)品銷售經(jīng)理 Hannah Metzner和英飛凌 PSS 部門高級工程師 René Mente



    免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


    推薦閱讀:


    江波龍:PCIe 4.0 SSD未來幾年仍是PC市場主流規(guī)格

    適用于高精度數(shù)據(jù)采集系統(tǒng)的模數(shù)轉(zhuǎn)換器了解一下

    可穿戴設(shè)備結(jié)合人工智能技術(shù)進(jìn)入醫(yī)療產(chǎn)業(yè)

    專為工業(yè)應(yīng)用而設(shè)計(jì)的MOSFET—TOLT封裝

    正壓睡眠呼吸機(jī)硬件設(shè)計(jì)方案

    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    亚洲VA中文字幕无码一二三区| 忘忧草在线社区WWW中国中文| 中文字幕亚洲情99在线| 小SAO货水好多真紧H无码视频| 中文亚洲欧美日韩无线码| 99久久人妻无码精品系列| 中出人妻中文字幕无码 | 韩国免费a级作爱片无码| 亚洲中文无韩国r级电影 | 亚洲日本中文字幕天堂网 | 中文字幕av高清片| 国产精品无码无卡无需播放器| 久久久久亚洲AV无码观看| 中文字幕二区三区| 久久精品无码av| 99久久人妻无码精品系列| 色欲A∨无码蜜臀AV免费播| 亚洲一区二区三区AV无码 | 无码人妻一区二区三区在线| 亚洲乱码中文字幕综合234| 在线中文字幕一区| 国产一区二区中文字幕| 天堂√中文最新版在线下载| 无码专区国产无套粉嫩白浆内射| AV无码人妻中文字幕| 国产AV无码专区亚洲精品| 精品欧洲AV无码一区二区男男| 亚洲AV无码成人网站久久精品大 | 久久精品中文字幕无码绿巨人| 亚洲精品无码专区在线在线播放| 国产色无码专区在线观看| 日韩精品无码免费专区网站| 无码国产精品一区二区免费式直播 | 亚洲AV永久无码精品一百度影院| 日韩va中文字幕无码电影| 国产成人精品无码一区二区三区 | 惠民福利中文字幕人妻无码乱精品| а天堂8中文最新版在线官网| 日本中文字幕在线| 最近2019中文字幕电影1| 区三区激情福利综合中文字幕在线一区|