<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > RF/微波 > 正文

    GaN HEMT 大信號模型

    發(fā)布時間:2022-09-15 來源:Wolfspeed 責(zé)任編輯:wenwei

    【導(dǎo)讀】GaN HEMT 為功率放大器設(shè)計者提供了對 LDMOS、GaAs 和 SiC 技術(shù)的許多改進。更有利的特性包括高電壓操作、高擊穿電壓、功率密度高達 8 W/mm、fT 高達 25 GHz 和低靜態(tài)電流。另一方面,GaN RF 功率器件具有自加熱特性,并且元件參數(shù)的非線性與信號電平、熱效應(yīng)和環(huán)境條件之間存在復(fù)雜的依賴關(guān)系。這些因素往往給準確預(yù)測器件大信號性能造成更多困難。


    為了確保器件性能,測試設(shè)備通常用于測量器件在所需應(yīng)用中的性能,但這種傳統(tǒng)方法存在缺點:需要開發(fā)測試硬件,并且必須進行耗時的負載牽引測量。


    出于若干原因,比物理測試更受青睞的是,與實際器件的測量性能緊密匹配的大信號模型。它降低了開發(fā)成本,允許進行更深入的“假設(shè)”分析,以在進行后續(xù)工作之前確定器件是否合適;基于縮短的表征時間和將布局優(yōu)化與最終性能聯(lián)系起來的能力,帶來更短的設(shè)計周期。結(jié)果是讓更多設(shè)計首次測試便獲得通過。


    #1 Wolfspeed GaN HEMT 大信號模型特性 


    Wolfspeed 為其基于 SiC 襯底的 GaN HEMT 器件開發(fā)了極其精確的 3 端口大信號模型,該 GaN HEMT 器件具有高效率、高增益和匹配相對更容易的特點。


    1661571610709910.png

    圖 1:Wolfspeed 3 端口大信號 HEMT 模型和 FET 等效電路


    圖 1 顯示了大信號模型原理圖和本征 FET 等效物。該模型基于已確立的等效電路方法。數(shù)據(jù)提取相對簡單;Wolfspeed 使用各種測試夾具和測試電路,包括基波和諧波上的負載牽引。在各種頻率和器件尺寸下,還驗證了大信號負載牽引和功率驅(qū)動,以確保精確的大信號縮放。


    為了成功地按大比例縮放,必須將單位晶格模型與所有操作區(qū)域的測量數(shù)據(jù)非常準確地匹配起來。有了準確且可擴展的大信號模型,就可能設(shè)計出更大功率的晶體管。3 端口 HEMT 模型在比例因子大于 100 比 1 的設(shè)計中取得了成功。非線性模型在使用 CW 條件進行測量的偏壓范圍內(nèi)擬合小信號參數(shù)。


    除了三個 FET 端口(柵極、源極和漏極)之外,該模型還提供本征漏電流和漏電壓波形以及芯片結(jié)溫。在設(shè)計復(fù)雜的 PA 架構(gòu)(如 F 類)時,本征漏電流和電壓波形至關(guān)重要,因為它們允許設(shè)計者優(yōu)化基本頻率和諧波頻率下的器件匹配。


    根據(jù)需要,該模型還具有單個元件的內(nèi)置過程靈敏度和非線性。例如,漏電流源是器件非線性的主要因素。柵極電流公式包括擊穿和正向傳導(dǎo),寄生電容的所有電壓變化都衍生自電荷公式。


    準確的封裝模型是另一關(guān)鍵因素。已經(jīng)開發(fā)了一種封裝寄生互連的物理衍生建模方法,該方法包括許多不同的工具,其中包括 s 參數(shù)。


    #2 模型數(shù)據(jù)與測量數(shù)據(jù)的比較


    小信號和大信號行為建模的準確性至關(guān)重要。


    小信號建模對于設(shè)計者預(yù)測功率放大器設(shè)計方案的增益、回波損耗和穩(wěn)定性很關(guān)鍵。Wolfspeed 模型根據(jù)不同柵寬、指尖數(shù)和偏壓范圍上的測量數(shù)據(jù)進行評估,以確保所有三個關(guān)鍵領(lǐng)域的模型精度:DC-IV、小信號和大信號行為。


    1661571591963819.png圖 2:建模(紅色)和物理(藍色)器件性能之間小信號

    (左側(cè))和大信號(右側(cè))圖的比較


    圖 2 比較了紅色的建模數(shù)據(jù)和藍色的測量數(shù)據(jù)。左側(cè)的史密斯圖顯示,在不同的柵寬和偏壓值上,建模數(shù)據(jù)在幅值和相位上都與測量數(shù)據(jù)非常接近。對于一系列不同的電流偏壓條件,這兩種結(jié)果非常接近。


    最大增益 Gmax 的精確建模對于設(shè)計者了解給定應(yīng)用的最大可用增益以及展現(xiàn)器件在頻率上的性能至關(guān)重要。右側(cè)的 Gmax 圖與測量數(shù)據(jù)密切相關(guān)。


    模型必須以 VDS 跟蹤 IV 行為,以正確描述器件的大信號性能。了解 DC IV 特性是 RF PA 設(shè)計非常重要的一個方面。


    GaN 器件在柵極脈沖開關(guān)過程中,由于表面陷阱電荷的存在,膝跳和電流崩潰是常見現(xiàn)象。作為模型提取過程的一部分,建模行為與脈沖 IV 數(shù)據(jù)相關(guān)。在各種頻率和器件尺寸下,還驗證了大信號負載牽引和功率驅(qū)動,以確保精確的大信號縮放。負載牽引曲線讓設(shè)計者了解需要向器件提供什么阻抗才能實現(xiàn)所需的功率和效率。


    1661571571972706.png

    圖 3:大信號測量數(shù)據(jù)與模型仿真的比較


    圖 3 中的曲線圖顯示,建模的增益和 PA 效率都和測量數(shù)據(jù)非常吻合,遠超 1 dB 和 3 dB 壓縮點。這對于 GaN 器件至關(guān)重要,因為與等效 LDMOS 器件不同,GaN HEMT 往往會產(chǎn)生超過 3 dB 壓縮點的最大額定功率輸出。


    可訪問 Wolfspeed GaN RF 大信號模型界面,其中討論了如何使用該模型來優(yōu)化 PA 應(yīng)用。給出了兩個示例。


    當功率放大器調(diào)整為最大輸出功率時,DC IV 圖顯示負載線傳過器件的最大電流為 350 mA。


    第二個應(yīng)用使用該模型進行調(diào)整以達到最大效率。在此應(yīng)用中,負載線穿過器件耗散最小功率的點,以獲得可接受的輸出功率。結(jié)果表明,雖然輸出功率下降了 1 dB,但與最大功率情況相比,效率提高了 15%。溫度端口顯示溫度僅增加 12 攝氏度,而不是原先設(shè)計為最大功率時溫度增加了 60 攝氏度。


    在這兩種情況下,建模數(shù)據(jù)軌跡都與測量數(shù)據(jù)非常接近。


    為了更好地了解大信號模型負載牽引數(shù)據(jù)驗證的過程,請參閱該應(yīng)用說明。


    #3 結(jié)論


    Wolfspeed 開發(fā)了大信號 RF 模型,證明了與測量數(shù)據(jù)之間極其準確的一致性。Wolfspeed 的代工廠(Foundry)業(yè)務(wù)使用這些模型來確保更短的循環(huán)時間、更高的可靠性和更多首次便通過測試的設(shè)計。


    設(shè)計者獲得的益處包括降低開發(fā)成本、減少 PA 設(shè)計迭代次數(shù)和更高的首次通過成功率。


    最大的利好在于,這些模型可以免費提供給符合條件的企業(yè)。


    有關(guān)更多信息,敬請訪問 Wolfspeed GaN RF 大信號模型界面:

    https://www.wolfspeed.com/tools-and-support/rf/large-signal-models/


    英文原稿,敬請訪問:

    https://www.wolfspeed.com/knowledge-center/article/gan-hemt-large-signal-models/



    免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


    推薦閱讀:


    通過KNX使家庭和樓宇自動化的控制面板設(shè)計更簡單

    TO-247封裝碳化硅MOSFET中引入輔助源極管腳的必要性

    了解為高分辨率、高幀率CMOS圖像傳感器設(shè)計供電方案的挑戰(zhàn)

    ABB采用IGBT7的新一代高功率密度變頻器ACS180系列

    電源應(yīng)用問題之應(yīng)用環(huán)境分析

    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    人妻无码中文久久久久专区| 精品人妻va出轨中文字幕| 狠狠躁夜夜躁无码中文字幕| 无码国产精品一区二区免费模式| 麻豆国产原创中文AV网站| 少妇无码AV无码专区在线观看| 中文字幕一二三区| 国产亚洲中文日本不卡二区| 精品无码人妻夜人多侵犯18| 一本色道久久HEZYO无码| 色综合久久精品中文字幕首页| 免费a级毛片无码免费视频| 性无码一区二区三区在线观看| 影音先锋中文无码一区| 中文字幕一区图| 日本一区二区三区精品中文字幕 | 色综合中文综合网| 亚洲av无码天堂一区二区三区| 免费无码成人AV在线播放不卡| 曰韩精品无码一区二区三区| 天堂а√在线地址中文在线| 亚洲VA中文字幕不卡无码| 中文字幕无码一区二区免费| 亚欧无码精品无码有性视频| 久久久久久无码国产精品中文字幕| 韩国免费a级作爱片无码| 精品无码无人网站免费视频 | 日日摸日日碰夜夜爽无码| 亚洲国产精品无码成人片久久 | 亚洲精品中文字幕无码蜜桃| 2014AV天堂无码一区| 成人无码A区在线观看视频| 中文有码vs无码人妻| 一夲道无码人妻精品一区二区| 亚洲乱码无码永久不卡在线| 亚洲熟妇无码另类久久久| 亚洲AV永久无码精品一百度影院| 亚洲国产精品无码久久| 国产午夜无码视频在线观看| 99久久国产热无码精品免费久久久久 | h无码动漫在线观看|