-
三極管電路輸入電壓阻抗
利用三極管,?搭建單管共射反向放大器,?放大器的增益與多個因素有關系,也和輸入阻抗成反比。如何來測量單管運放的輸入阻抗呢? 下面在 LTspice中通過仿真進行測量。
2024-10-27
-
預補償方法以減少Class D功率放大器的爆裂噪聲
如今,Class D功率放大器在音頻系統中被廣泛使用。然而,在放大器啟動或關閉時,以及在靜音/取消靜音切換期間,揚聲器中經常會出現爆裂聲或點擊聲。這些噪音可能會被聽到,并使用戶感到不適。在音頻系統中靜音功率放大器是避免在啟動或關閉期間出現爆裂聲的有效方法。此外,音頻系統有時播放音樂,有時停止播放,這需要頻繁地靜音或取消靜音放大器。因此,爆裂聲是頻繁靜音和取消靜音控制的關鍵問題。本文討論了靜音/取消靜音過渡期間爆裂聲的發生原因,并設計了相應的方法來抑制這些噪音。
2024-09-29
-
學子專區—ADALM2000實驗:調諧放大器級
當輸入頻率(FIN)低于FR時,電路阻抗從其最大值開始減小并呈感性。當FIN高于FR時,電路阻抗再次下降,但呈容性。當在FR處工作時,諧振電路的阻抗達到其最大值。因此,調諧共發射極放大器2的增益也處于最大值。
2024-09-25
-
兩張圖說清楚共射極放大器為什么需要發射極電阻
共射極(CE)放大器的發射極電阻是設定放大器增益的重要組件之一。它通過限制對放大器級的負反饋量來實現這一功能。簡而言之,發射極旁路電容器通過抑制反饋來增加放大器的增益。
2024-09-18
-
音頻變壓器的詳細的知識
除了升高或降低信號電壓外,變壓器還具有另一個非常有用的特性,即隔離。由于變壓器的初級和次級繞組之間沒有直接的電氣連接,因此變壓器的輸入和輸出電路之間提供了完全的電氣隔離。連接在放大器和揚聲器之間的音頻變壓器也可以利用這種隔離特性。
2024-09-03
-
單級小信號 RF 放大器設計
幾乎所有的電子電路都依賴于放大器,放大器電路會放大它們接收到的輸入信號。基本的放大器電路由雙極結型晶體管組成,晶體管偏置使器件在有源區運行。晶體管的有源區用于放大目的。當晶體管偏置為有源區時,施加在輸入端子上的輸入信號會使輸出電流出現波動。波動的輸出電流流過輸出電阻,產生經過放大的輸出電壓。
2024-09-02
-
適用于電化學傳感器的運算放大器
電化學氣體檢測元件需要恒定的偏置才能正常準確地運行,這可能會消耗大量功率。當器件處于空閑或休眠模式時,正常的 電源管理系統往往會試圖讓這些器件都保持關斷狀態。然而, 電化學傳感器需要數十分鐘甚至幾個小時才能穩定下來。因 此,檢測元件及其偏置電路必須處于“始終接通”狀態。此 外,對于使用單節AA電池的消費電子應用,所需的偏置電壓通 常非常低。
2024-08-30
-
提高垂直分辨率 改善測量精度
提高垂直分辨率一直是示波器設計者的目標,因為工程師需要測量更精細的信號細節。但是,想獲得更高垂直分辨率并不只理論上增加示波器模數轉換器(ADC)的位數就能實現的。泰克4、5 和6系列示波器采用全新的12位ADC和兩種新型低噪聲放大器,不僅在理論上提高分辨率,在實用中垂直分辨率性能大大提升。這些顛覆式的產品擁有高清顯示器和快速波形更新速率,并且實現更高的垂直分辨率來查看信號的細節。
2024-08-23
-
使用運算放大器分割電壓軌以創建虛擬地
設計中可能包含需要雙極電源的傳感器或 IC,或者您需要充分利用雙極輸入模數轉換器 (ADC) 的動態范圍。分割電壓軌的另一個原因是,如果您在單電源軌設計中需要中間軌偏置電壓。
2024-08-17
-
有源全波整流器無需匹配電阻?來看看這個非常規設計
精密有源全波整流器是一種經典的模擬應用。這一主題有許多不同的實現方法,每種方法都有自己的所謂優勢。但是,(幾乎)所有有源全波整流器設計都需要一個電路元件,那就是帶有匹配電阻的反相器,以將其增益設置為精確的-1.0。在這種拓撲中,整流的對稱性依賴于電阻所匹配的精度,并且不可能比其更好。例如,圖1是一個眾所周知的(真正的經典!)設計,其中運算放大器U1b充當反相器,R1和R2充當其匹配的增益設置電阻。除非R1=R2,否則負Vin偏移時整流器輸出不大可能等于正Vin偏移的輸出。
2024-08-17
-
什么是S參數?
S參數量化了RF能量是如何通過系統傳播的,因而包含有關其基本特征的信息。使用S參數可以將最復雜的RF器件表示為簡單的N端口網絡。圖1顯示了一個雙端口未平衡網絡的例子,該網絡可用于表示許多標準RF元件,例如RF放大器、濾波器或衰減器等。
2024-08-09
-
意法半導體推出高性能、高能效、節省空間的36V工業級和汽車級運算放大器
意法半導體推出了TSB952雙運算放大器 (運放)。新產品具有52MHz的增益帶寬,在36V電壓時,電源電流每通道僅為3.3mA,為注重功耗的設計帶來高性能。
2024-07-03
- 如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰?
- 不同拓撲結構中使用氮化鎵技術時面臨的挑戰有何差異?
- 集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
- 多通道同步驅動技術中的死區時間納米級調控是如何具體實現的?
- 電壓放大器:定義、原理與技術應用全景解析
- 減排新突破!意法半導體新加坡工廠冷卻系統升級,護航可持續發展
- 低排放革命!貿澤EIT系列聚焦可持續技術突破
- 精密信號鏈技術解析:從原理到高精度系統設計
- 性能與成本的平衡:獨石電容原廠品牌深度對比
- 從失效案例逆推:獨石電容壽命計算與選型避坑指南
- 獨石電容技術全景解析——從成本到選型的工程實踐指南
- 電子系統設計必讀——基準電壓源選型指南
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall