-
高速差分ADC驅動器設計指南
作為應用工程師,我們經常遇到各種有關差分輸入型高速模數轉換器(ADC)的驅動問題。事實上,選擇正確的ADC驅動器和配置極具挑 戰性。為了使魯棒性ADC電路設計多少容易些,我們匯編了一套通用"路障"及解決方案。本文假設實際驅動ADC的電路—也被稱為ADC 驅動器或差分放大器 — 能夠處理高速信號。
2019-12-18
-
固定增益差分放大器的增益可以調節嗎?當然沒問題!
經典的四電阻差分放大器可以解決許多測量難題。但是,總有一些應用需要的靈活性比這些放大器所能提供的更高。由于在差分放大器中電阻匹配直接影響到增益誤差和共模抑制比(CMRR),所以將這些電阻集成到同一個裸片上可以實現高性能。但是,僅僅依靠內部電阻來設置增益,用戶就無法在制造商的設計選擇之外靈活選擇自己想要的增益。
2019-12-17
-
為AB類放大器改用D類放大器而擔憂?其實不必如此
我最近在與汽車音頻設計工程師討論汽車收音機解決方案不采用傳統的AB類放大器而改用D類放大器時,他們也是有這樣的擔憂。現在我們來談談我最常聽到的兩個主要問題:對印刷電路板(PCB)尺寸的影響和潛在的電磁干擾(EMI)問題。
2019-12-17
-
三線制變送器接線方法圖解
幾線制的稱謂,是在兩線制變送器誕生后才有的。這是電子放大器在儀表中廣泛應用的結果,放大的本質就是一種能量轉換過程,這就離不開供電。因此最先出現的是四線制的變送器;即兩根線負責電源的供應,另外兩根線負責輸出被轉換放大的信號(如電壓、電流、等)。
2019-12-16
-
射頻放大器有哪些主要類型?
射頻放大器,根本上是我們射頻系統中的正反饋系統,一般位于發射鏈路上。由于考慮無線傳輸的鏈路衰減,發射端需要輻射足夠大的功率才能獲得比較遠的通信距離。因此,射頻放大器主要負責將功率放大到足夠大后饋送到天線上輻射出去,是通信系統中的核心器件。
2019-12-16
-
陷波濾波器能有效降低放大器峰值并提高增益平坦度
ADA4817 FastFET? 運算放大器可以實現 1 GHz 的帶寬,而輸入噪聲僅為 4 nV/√Hz,這使得它成為同類產品中速度最快且噪聲最低的放大器。雖然 ADA4817 的單位增益是穩定的,但高頻極將其增益帶寬積從 410 MHz(高增益)增加到 1 GHz(單位增益)。不幸的是,該高頻極降低了相位裕度,造成不必要的頻率響應峰值和階躍響應振鈴。通過在放大器的同相輸入中添加離散 RLC 陷波濾波器,不僅可以保持高帶寬和輸入阻抗,同時還能大幅降低峰值、提高增益平坦度和減少過沖。
2019-12-10
-
以模擬微控制器為核心構成低成本高效率的功率放大器監測器
考慮到日益迫近的全球能源危機和人們對環境保護的期望日益增高,節能對高效無線網絡的運營至關重要。功率放大器(PA)是基站和 中繼器的核心,其功耗可能占基站總功耗的一半。對功率放大器進行監控不僅可以提高功效、降低運營成本、提高輸出功率和線性度, 而且可以使系統操作人員及時發現和解決問題,進而提高可靠性和可維護性。
2019-12-07
-
利用高速放大器實現低成本視頻多路復用
過去幾年,連接到單一顯示器的視頻源數量逐漸增加,使得視頻信號切換成為大多數視頻系統的必備功能。例如,在典型的家庭娛樂系統中,有線或衛星電視所用的機頂盒 (STB) 或數字錄像機 (DVR)、VCR、DVD播放器、視頻游戲機和PC等全都連接到一臺顯示器。多個視頻源切換到單一顯示器的功能也擴展到汽車,其中的視頻源包括車載娛樂系統 (VES)、后視攝像頭、DVD播放機、導航系統和輔助視頻輸入。
2019-12-06
-
減少放大器尺寸、降低熱負荷,這些汽車音頻注意事項你都get了嗎?
集成在信息娛樂系統中的音頻解決方案可能有所不同,有典型的四音頻通道(兩個音箱在前,兩個音箱在后),也有無需外部放大器即可驅動6或8個總揚聲器的新型解決方案。
2019-12-05
-
介紹一種有源電路---運算放大器
在本實驗中,我們介紹一種有源電路——運算放大器,其某些特性(高輸入電阻、低輸出電阻和大差分增益)使其成為接近理想的放大器,并且是很多電路應用中的有用構建模塊。在本實驗中,您將了解有源電路的直流偏置,并探索若干基本功能運算放大器電路。我們還將利用此實驗繼續培養使用實驗室硬件的技能。
2019-12-04
-
采用電壓注入法測量環路增益
本實驗的目標是采用電壓注入法,利用 ADALM2000 網絡分析 儀功能和變壓器來測量負反饋系統的環路增益,例如測量反相運算放大器增益。
2019-12-04
-
如何理解電容、電感產生的相位差
對于正弦信號,流過一個元器件的電流和其兩端的電壓,它們的相位不一定是相同的。這種相位差是如何產生的呢?這種知識非常重要,因為不僅放大器、自激振蕩器的反饋信號要考慮相位,而且在構造一個電路時也需要充分了解、利用或避免這種相位差。下面探討這個問題。
2019-12-03
- 如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰?
- 不同拓撲結構中使用氮化鎵技術時面臨的挑戰有何差異?
- 集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
- 多通道同步驅動技術中的死區時間納米級調控是如何具體實現的?
- 電壓放大器:定義、原理與技術應用全景解析
- 減排新突破!意法半導體新加坡工廠冷卻系統升級,護航可持續發展
- 低排放革命!貿澤EIT系列聚焦可持續技術突破
- 高結溫IC設計避坑指南:5大核心挑戰與應對策略
- 普通鐵磁材料對3D打印磁環EMI抑制性能的影響與優化路徑
- 3D打印微型磁環成本優化:多維度降本策略解析
- 雙核異構+TSN+NPU三連擊!意法新款STM32MP23x重塑工業邊緣計算格局
- 聚焦智能聽力健康智能化,安森美北京聽力學大會展示創新解決方案
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall