<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 傳感技術 > 正文

    基于傳感器內神經網絡的模擬-信息轉換技術,可顯著降低傳感器功耗

    發布時間:2022-12-06 來源:MEMS 責任編輯:wenwei

    【導讀】據麥姆斯咨詢報道,近日,亞利桑那州立大學(Arizona State University)介紹了一種片上模擬-信息轉換技術,該技術利用基于儲層計算范式的模擬超維計算,在本地傳感器內處理心電圖(electrocardiograph,ECG)信號,并將射頻(RF)傳輸減少三個數量級以上。片上模擬-信息轉換器不是傳輸稀疏的ECG信號或提取的特征,而是通過一個附有人工神經網絡的非線性存儲內核來分析ECG信號,并傳輸預測結果。所開發的技術被證明可用于檢測敗血癥發作,并實現了超高的準確度和能效,同時使用65nm CMOS原型測試芯片將傳感器功耗降低了159倍。


    射頻傳輸是無線傳感器功耗產生的主要因素,因此,本地傳感器內信號處理優于連續射頻傳輸,尤其對于生物醫學傳感器。例如,低功率MedRadio傳輸器的功耗為67μW,明顯高于片上特征提取。雖然有幾種技術可以壓縮射頻傳輸,但壓縮比通常限制在<20倍。迄今為止,壓縮射頻傳輸的方法有基于稀疏性的數據壓縮算法、基于導數的自適應采樣、過電平采樣和自適應分辨率數字化。據報道,上述技術已將傳輸數據壓縮了2~16倍。與現有技術相比,研究人員提出將人工智能(artificial intelligence,AI)嵌入傳感器本身,以分析每個ECG片段,并僅傳輸預測分數,而不是ECG數據或提取的特征,以將射頻傳輸降低5000倍以上。


    由于人工智能算法是計算密集型的,因此設計低能耗的傳感器內神經網絡具有挑戰性。在本項工作中,為了解決無線生物醫學傳感器中的能量瓶頸,研究人員提出了一種直接處理模擬ECG樣本的模擬信號處理神經網絡。這項工作的主要貢獻是設計和演示了一種片上模擬分類器,其由一個儲層計算機(reservoir-computer,RC)和一個三層人工神經網絡(artificial neural network,ANN)組成,用于處理模擬ECG片段。與數字基線(前端ADC和數字ANN)相比,能耗降低了13倍;與直接傳輸數字化ECG片段相比,傳感器總能耗降低了159倍。傳感器內處理AI電路主要用于CMOS圖像傳感器,通過執行片上特征提取來減少需要傳輸到傳感器外的數據量。據研究人員所知,這項工作提出了第一個用于模擬-信息轉換的傳感器內人工智能電路,以顯著降低可穿戴生理傳感器的傳輸能量,并延長此類無線傳感器的電池壽命。


    1.jpg

    傳統ECG傳感器與所提出的具有傳感器內RC+ANN人工智能模塊的ECG傳感器對比


    2.png

    與傳輸所有數字化數據和數字基線的傳統傳感器技術的能耗比較


    在這項工作中,MIMIC–III數據集的ECG信號被用于證明通過傳感器內人工智能進行模擬-信息轉換技術的可行性。然而,在實際的家庭監護應用中,所獲取的ECG信號可能包含偽影,在將ECG信號發送到RC+ANN組合之前,需要經過具有帶通濾波模擬前端(analog front-end,AFE)的處理。AFE將消耗額外的功率,這將降低這項技術相對于傳輸所有傳感器數據的傳統方法的能耗優勢。因此,傳感器內人工智能技術將高能效的設計挑戰從傳輸轉移到了AFE。通過基于反相器的放大器設計和反相器堆疊可以潛在地提高AFE能源效率,以降低傳感器的總能耗。


    本項工作在電路方面的限制是研究人員設計的電路比最先進的基于SRAM的人工智能電路的面積效率低。這種面積限制主要是由于使用開關電容電路作為矩陣乘法的構建塊,其面積效率低于SRAM單元。本設計中使用的金屬對金屬(metal-on-metal)電容器的面積密度(以fF/μmm2表示)沒有晶體管的面積密度大,因此SRAM電路相對于RC+ANN的面積效率優勢可能會隨著CMOS技術的擴展而增大。由于輸入層和存儲層中的計算可能是非線性的,所以提高RC+ANN的面積效率的潛在解決方案是在輸入層和存儲層中采用SRAM陣列進行矩陣乘法,并且僅在需要更高線性度的情況下使用開關電容電路進行基于ANN的讀出。


    3.png

    用于分析ECG信號的儲層計算機的電路示意圖


    論文信息:

    https://www.nature.com/articles/s41598-022-23100-4


    來源:MEMS



    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


    推薦閱讀:


    寄生電感的介紹

    適用于下一代大功率應用的XHP2封裝

    AR眼鏡中的顯示技術:虛擬超脫想象之外,包羅萬象卻基于現實

    新型的工業級TMR角度傳感器

    全SiC MOSFET模塊讓工業設備更小、更高效

    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    六月婷婷中文字幕| 成人无码午夜在线观看| 中文字幕国产| 无码人妻AⅤ一区二区三区水密桃 无码欧精品亚洲日韩一区夜夜嗨 无码免费又爽又高潮喷水的视频 无码毛片一区二区三区中文字幕 无码毛片一区二区三区视频免费播放 | 亚洲AV综合色区无码一区 | 韩国三级中文字幕hd久久精品| 国产av无码专区亚洲av桃花庵| 亚洲人成无码网站在线观看 | 中文有码vs无码人妻| 国产亚洲3p无码一区二区| 人妻无码精品久久亚瑟影视| 伊人久久无码中文字幕| 午夜无码视频一区二区三区| 无码国产精品一区二区免费vr | 中文无码喷潮在线播放| 中文字幕乱码久久午夜| 精品无码专区亚洲| 国产成人精品无码一区二区| 亚洲av中文无码乱人伦在线播放| 中文字幕精品无码一区二区| 久久中文骚妇内射| 精品久久人妻av中文字幕| 亚洲一级特黄无码片| 国产精品无码v在线观看| 国产中文欧美日韩在线| 精品久久久无码人妻中文字幕| AV成人午夜无码一区二区| 国产av永久无码天堂影院| 久久av无码专区亚洲av桃花岛| 亚洲AV无码久久精品成人 | 久久ZYZ资源站无码中文动漫| 亚洲av无码乱码国产精品fc2| 亚洲精品中文字幕无码蜜桃| 亚洲国产精品无码久久一线| 日韩AV无码一区二区三区不卡毛片 | 亚洲中文久久精品无码ww16| 无码8090精品久久一区| 亚洲爆乳精品无码一区二区| 亚洲精品无码av天堂| 日本公妇在线观看中文版| 中文字幕丰满乱子伦无码专区|