<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術 > 正文

    混合模塊開啟下一場芯片封裝革命

    發布時間:2018-01-17 來源:Jim O''Reilly 責任編輯:lina

    【導讀】計算機主要組件的封裝幾十年來相對穩定,但現在正經歷一場革命。例如,在內存和中央處理器(CPU)之間已經達到散熱和帶寬極限的情況下,業界正在尋求新的方案來提高性能并降低功耗。最近兩年,引領這一追求的是混合內存立方體(HMC)構想...


    計算機主要組件的封裝幾十年來相對穩定,但現在正經歷一場革命。例如,在內存和中央處理器(CPU)之間已經達到散熱和帶寬極限的情況下,業界正在尋求新的方案來提高性能并降低功耗。
     
    最近兩年,引領這一追求的是混合內存立方體(HMC)構想(圖1)。這是美光科技(Micron)提出的概念,業已被龐大的產業領導者聯盟——混合內存立方體聯盟(Hybrid Memory Cube Consortium)所采用。
     

    圖1 混合內存立方體。
     
    這一概念基于用一組高速串行連接取代傳統的DRAM總線,同時使內存和運算芯片在物理上非常接近,以便去掉驅動DRAM總線的功率晶體管。由此產生的模塊可將內存的功耗降低70%~90%,目前性能可達160GB/s水平,這是兩項令人矚目的進展。未來的配置目標是超過上述指針的兩倍,最終是使用多個內存模塊實現1TB/s的吞吐率。
     
    硅穿孔(TSV)是使能技術(enabling technology)。透過在邏輯模塊上堆棧內存裸片并使用TSV將頂層連接到邏輯電路,使用大量的并行鏈路,可實現很小的面積占用。今天的產品通常有四個堆棧裸片,所以每個模塊的容量限制在16GB。
     
    邏輯層可以是CPU、繪圖處理器(GPU)、現場可編程門陣列(FPGA)或只是控制邏輯,似乎所有這些選項都開始出現。來看一些應用,CPU選項看來顯而易見,在CPU之上構建DRAM得到的稍厚的混合芯片,應用在智能型手機和平板計算機上令人關注,這是一種節省寶貴空間的方式,但更重要的是節省稀少且缺乏的電能。使用16GB容量的方案,已經是個可行的建議,而更高密度的封裝將擴大到整個市場。
     
    在服務器中,更高的帶寬是吸引力所在。目前尚不清楚市場是否會跟進CPU/內存堆棧路徑,或是選擇多個內存芯片的緊密并列封裝,后者可將帶寬提升到500+GB/s范圍并增加HMC容量。舉例來說,英特爾(Intel)的Knights Landing Phi芯片旨在使用堆棧內存結構(圖2)。
     

    圖2 英特爾Knights Landing代號Xeon Phi處理器。(圖片來源:英特爾)
     
    AMD和Nvidia這兩家GPU制造商選擇了采用多通道并行總線不同的模塊化方法(高帶寬內存,HBM)。HMB比RAM總線寬得多,可提供更高帶寬。DRAM裸片堆棧和與GPU緊密耦合旨在解決性能和功耗問題,將模塊方法應用到GPU引發了與服務器相同的封裝問題,因此解決方案的采用可能取決于GPU產品是針對消費類還是針對人工智能(AI)市場。
     
    在服務器系統中用作加速器的FPGA,其本身的故事仍在不斷演繹,盡管像Altera/Intel和賽靈思(Xilinx)這樣的公司已經為HMC提供了原型開發板。
     
    這種模塊化方法透露出主要的管道含義。然主導力的天平明顯地倒向內存芯片制造商(如美光),而對沒代工廠的DIMM組裝廠商不利,但這并非一蹴可幾,因為系統結構和芯片生態系統還沒有發展到可正確使用模塊化方案??赡艿那闆r是,智能型手機的封閉性將使其成為更容易滲透的市場。
     
    服務器市場轉向模塊化方法,很可能會因服務器核心中以結構為中心架構的興起而變得復雜。諸如Gen-Z之類的方法使得串行內存連接成為將CPU、GPU、FPGA和外部通訊連接在一起的RDMA結構的焦點,它使所有服務器單元之間直接使用公共內存,以及共享內存和接口的跨集群成為可能。未來AMD和Nvidia的計劃將致力于內存與GPU之間更緊密的耦合,以使當前架構將大量數據從CPU內存傳輸到GPU內存的問題不再困難。
     
    主導力的天平倒向芯片制造商不僅傷及DIMM制造商,還同樣殃及插卡制造商。服務器主板將可能具有針對適配驅動器或LAN的SoC方案的ZIF插槽,以及用于內存和計算組件的更多插槽。
     
    但供貨商陣營也并非一團和氣。英特爾在談論與業內其他家不同的途徑。業內有討論可更好填補Optane NVDIMM和L3高速緩存之間性能差距的高帶寬、低延遲(HBLL)DIMM方案,而不是用于服務器的HMC。
     
    最后的難題是,雖然這些新的內存速度非常快,但容量有限,目前為16GB或更小。雖然這與DIMM類似,但其架構將當今的許多模塊排除在外。隨著對TB容量內存的需求, 該問題尚沒有得體的對策。英特爾在NVDIMM中內置傲騰(Optane)的HBLL方法很可能是條解決之道。
     
    盡管英特爾明顯的離經叛道(沒有任何東西正式宣布為產品),但很明顯,系統將變得更快、更模塊化。為實現這種模塊化,以太網絡NVMe作為一種共享主儲存的方式在市場上備受矚目——這種架構可使驅動器與服務器分開,盡管它們可能仍然共享封裝。所有這些都將在2018年上半年成為整個產業的發展藍圖,并導致系統性能真正大幅度地提升,從而推動整個系統和儲存市場的發展。




    推薦閱讀:
    智能手機+人工智能,哪些應用會火起來? 
    簡單了解電阻器常見的幾種失效模式 
     結合LED照明的電容式感應設計方案 
    深度解析開關電源雙極性晶體管的開關特性 
     
    要采購開關么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    亚洲永久无码3D动漫一区| 中文字幕一区二区三区在线观看 | 中文字幕日韩第十页在线观看| 久久精品中文无码资源站| 日韩欧美中文字幕一字不卡| 中文字幕人成高清视频| 国产成A人亚洲精V品无码性色| 免费a级毛片无码a∨免费软件 | 天堂а√在线地址中文在线| 亚洲精品无码专区2| 无码中文人妻视频2019| 中文字幕无码高清晰 | 少妇无码AV无码专区在线观看| 暖暖免费中文在线日本| 欧美日韩中文在线| 中文字幕网伦射乱中文| 久久久久久无码国产精品中文字幕 | JLZZJLZZ亚洲乱熟无码| 无码专区永久免费AV网站| 中文字幕人妻无码一区二区三区| 精品久久久无码中文字幕| 最新版天堂中文在线| 无码人妻精品中文字幕免费| 国产精品 中文字幕 亚洲 欧美| 日韩经典精品无码一区| 日无码在线观看| 无码人妻少妇伦在线电影| 国产高清无码视频| A级毛片无码久久精品免费| 精品视频无码一区二区三区| 色欲狠狠躁天天躁无码中文字幕 | 黄桃AV无码免费一区二区三区 | 国产精品99精品无码视亚| 无码AV中文字幕久久专区| 色偷偷一区二区无码视频| 国产成人亚洲综合无码精品| 狠狠躁狠狠躁东京热无码专区| 久久无码av三级| 婷婷色中文字幕综合在线| 国产成人三级经典中文| 五月天中文字幕mv在线女婷婷五月|