-
如何在大功率應用中減少損耗、提高能效并擴大溫度范圍
功耗密集型應用的設計人員需要更小、更輕、更節能的電源轉換器,能夠在更高電壓和溫度下工作。在電動汽車 (EV) 等應用中尤其如此,若能實現這些改進,可加快充電速度、延長續航里程。為了實現這些改進,設計人員目前使用基于寬帶隙 (WBG) 技術的電源轉換器,例如碳化硅 (SiC) 電源轉換器。
2023-10-08
大功率應用 損耗 溫度范圍
-
通過 SPICE 仿真預測 VDS 開關尖峰
電源行業的主要目標之一是為數據中心和5G等應用中的電源設備帶來更高的電源轉換效率和功率密度。與具有單獨驅動器 IC 的傳統分立 MOSFET 相比,將驅動器電路和功率 MOSFET(稱為 DrMOS)集成到 IC 中可提高功率密度和效率。
2023-10-07
SPIC 仿真 VDS 開關
-
電動汽車熱和集成挑戰
到目前為止,我們提到的每一種趨勢都帶來了獨特的技術挑戰。對于更高集成度的解決方案,主要挑戰在于創建節能解決方案。具體來說,隨著高性能組件之間的集成變得更加緊密,對熱密度的擔憂開始威脅到設備的可靠性。控制熱量需要高能效半導體,將少的功率轉化為熱量。因此,業界正在采用SiC MOSFET代...
2023-09-27
電動汽車 熱 集成
-
D 類音頻放大器:什么、為什么以及如何
D類音頻放大器近年來越來越出名。本文將介紹 D 類音頻放大器的內容、原因和方法。本文還將介紹音頻放大器的背景以及 D 類放大器的優點以及與其他放大器的一些比較。
2023-09-27
D 類音頻放大器 音頻放大器 便攜式設備
-
半導體器件擊穿機理分析及設計注意事項
在日常的電源設計中,半導體開關器件的雪崩能力、VDS電壓降額設計是工程師不得不面對的問題,本文旨在分析半導體器件擊穿原理、失效機制,以及在設計應用中注意事項。
2023-09-25
半導體器件 擊穿機理 注意事項
-
使用電壓/電流模擬光耦合器進行隔離
隔離電壓/電流感測在工業應用中具有多種用途,如圖 1 所示。它可用于檢測電源浪涌時的過壓或斷電時的欠流。此外,它還提供信號隔離以及電噪聲和瞬態干擾的抑制,防止系統故障。ACPL-K370/K376 是具有內置電壓/電流閾值檢測電路的模擬光耦合器器件。該器件具有檢測精度高、交流或直流電壓檢測范圍寬...
2023-09-21
電壓模擬光耦合器 電流模擬光耦合器 隔離
-
使用電荷泵驅動外部負載
CS5521/23、CS5522/24/28 和 CS5525/26 系列 A/D 轉換器包含斬波穩定儀表放大器,用于測量低電平直流信號(±100 mV 或更?。?。該放大器設計用于產生非常低的輸入采樣電流(在 -40 至 +85?C 范圍內,ICVF < 300 pA)。當使用高阻抗電路進行輸入保護時,低輸入電流可限度地減少熱電偶測量中可能出現的...
2023-09-20
電荷泵 外部負載
-
提升直流穩壓電路的效率并降低噪聲
在高效率非常重要的場合,開關穩壓器是電壓調節的理想選擇。但是,開關穩壓器仍然會消耗一些能量,而且開關噪聲可能是一個挑戰。利用 Analog Device 的直通特性,用戶可以實現效率的顯著提升和無噪聲運行。負載對電壓波動的承受能力越強,潛在效益越大。
2023-09-20
直流穩壓電路 噪聲 效率
-
無源器件,電容并不總是容性的!
在理想元件理論中,電容表現為容性。然而,這僅在特定的工作條件下成立,且取決于頻率范圍。本文重點介紹不同電容的阻抗特性,并說明電容何時會表現為容性,何時不表現為容性。
2023-09-15
無源器件 電容 容性 伍爾特電子
- 如何解決在開關模式電源中使用氮化鎵技術時面臨的挑戰?
- 不同拓撲結構中使用氮化鎵技術時面臨的挑戰有何差異?
- 集成化柵極驅動IC對多電平拓撲電壓均衡的破解路徑
- 多通道同步驅動技術中的死區時間納米級調控是如何具體實現的?
- 電壓放大器:定義、原理與技術應用全景解析
- 減排新突破!意法半導體新加坡工廠冷卻系統升級,護航可持續發展
- 低排放革命!貿澤EIT系列聚焦可持續技術突破
- 雙核異構+TSN+NPU三連擊!意法新款STM32MP23x重塑工業邊緣計算格局
- 聚焦智能聽力健康智能化,安森美北京聽力學大會展示創新解決方案
- 如何通過3D打印微型磁環來集成EMI抑制?
- 突破物理極限:儀表放大器集成度提升的四大技術路徑
- 儀表放大器的斬波穩定技術原理
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall